Table 7 Statistics of model prediction metrics under different signal-noise ratios.

From: Application of stacked bidirectional LSTM neural networks in reservoir porosity prediction

Signal-noise ratio

Neural network model

MAE

RMSE

Predictive accuracy (%)

10dB

RNN

0.0109

0.0209

59.38

LSTM

0.0083

0.0183

68.75

Un-attention S-BiLSTM

0.0066

0.0156

76.56

S-BiLSTM

0.0046

0.0136

82.81

5dB

RNN

0.0124

0.0224

53.75

LSTM

0.0093

0.0192

64.44

Un-attention S-BiLSTM

0.0074

0.0169

73.44

S-BiLSTM

0.0054

0.0149

80.03

1dB

RNN

0.0147

0.0243

44.81

LSTM

0.0125

0.0224

53.5

Un-attention S-BiLSTM

0.0089

0.0186

65.63

S-BiLSTM

0.0063

0.0159

76.12