Table 8 Comparison of models performance through fivefold cross validation considering 6 features (FV, SF, FL, FA, w/b, and a0).

From: Machine learning-based prediction of crack mouth opening displacement in ultra-high-performance concrete

Model

Fold

R2

Score

RMSE (mm)

Score

VAF (%)

Score

Ranking score

DTR

1

0.601

1

0.153

1

0.603

1

15

2

0.623

1

0.155

1

0.627

1

3

0.581

1

0.148

1

0.590

1

4

0.732

1

0.115

1

0.741

1

5

0.558

1

0.136

1

0.558

1

SVR

1

0.822

7

0.102

7

0.822

7

95

2

0.791

6

0.115

6

0.791

6

3

0.815

6

0.098

6

0.817

6

4

0.847

6

0.087

6

0.848

7

5

0.814

6

0.088

6

0.816

7

NuSVR

1

0.828

8

0.100

8

0.828

8

109

2

0.795

7

0.113

7

0.796

7

3

0.819

7

0.097

7

0.821

7

4

0.857

8

0.083

8

0.857

8

5

0.814

6

0.087

7

0.815

6

GPR

1

0.821

6

0.103

6

0.821

6

108

2

0.799

8

0.113

7

0.799

8

3

0.824

8

0.096

8

0.825

8

4

0.855

7

0.085

7

0.856

6

5

0.825

7

0.085

8

0.826

8

XGBoost

1

0.705

2

0.132

2

0.706

2

30

2

0.659

2

0.147

2

0.661

2

3

0.726

2

0.120

2

0.726

2

4

0.731

2

0.115

2

0.731

2

5

0.682

2

0.115

2

0.683

2

RFR

1

0.773

5

0.116

5

0.774

5

66

2

0.750

4

0.126

4

0.751

4

3

0.782

4

0.107

4

0.784

4

4

0.830

5

0.092

4

0.830

5

5

0.796

5

0.092

5

0.797

5

GBR

1

0.764

4

0.118

4

0.765

4

51

2

0.747

3

0.127

3

0.749

3

3

0.745

3

0.116

3

0.751

3

4

0.791

3

0.101

3

0.792

3

5

0.754

4

0.101

4

0.755

3

ANN

1

0.723

3

0.128

3

0.733

3

63

2

0.764

5

0.122

5

0.778

5

3

0.812

5

0.099

5

0.819

5

4

0.822

4

0.094

5

0.823

4

5

0.731

3

0.106

3

0.786

4

TabPFN

1

0.918

9

0.072

9

0.918

9

133

2

0.910

9

0.076

8

0.910

9

3

0.923

9

0.069

9

0.919

9

4

0.942

9

0.058

9

0.959

9

5

0.925

8

0.067

9

0.923

9