Table 2 The performance of predictive models and readers.
Cohort | AUC (95%CI) | Accuracy | Sensitivity | Specificity | PPV | NPV | |
|---|---|---|---|---|---|---|---|
Training cohort | Radiomics model | 0.867 [0.819–0.916] | 0.810 | 0.798 | 0.816 | 0.710 | 0.878 |
2D DL model | 0.846 [0.797–0.895] | 0.794 | 0.640 | 0.880 | 0.750 | 0.813 | |
3D DL model | 0.959 [0.934–0.984] | 0.923 | 0.888 | 0.943 | 0.898 | 0.937 | |
Nomogram | 0.873 [0.831–0.915] | 0.749 | 0.933 | 0.646 | 0.597 | 0.944 | |
Internal validation cohort | Reader 1 | 0.742 [0.644–0.841] | 0.727 | 0.558 | 0.836 | 0.686 | 0.747 |
Reader 2 | 0.727 [0.630–0824] | 0.700 | 0.512 | 0.821 | 0.647 | 0.724 | |
Radiomics model | 0.727 [0.621–0.823] | 0.682 | 0.605 | 0.731 | 0.591 | 0.742 | |
2D DL model | 0.835 [0.758–0.911] | 0.791 | 0.744 | 0.821 | 0.727 | 0.833 | |
3D DL model | 0.732 [0.638–0.827] | 0.682 | 0.674 | 0.687 | 0.580 | 0.774 | |
Nomogram | 0.867 [0.799–0.936] | 0.836 | 0.953 | 0.761 | 0.719 | 0.962 | |
External validation cohort | Reader 1 | 0.726 [0.598–0.854] | 0.689 | 0.565 | 0.763 | 0.591 | 0.843 |
Reader 2 | 0.715 [0.790–0.944] | 0.689 | 0.478 | 0.816 | 0.591 | 0.744 | |
Radiomics model | 0.705 [0.567–0.843] | 0.721 | 0.391 | 0.921 | 0.750 | 0.714 | |
2D DL model | 0.804 [0.696–0.913] | 0.705 | 0.957 | 0.553 | 0.564 | 0.955 | |
3D DL model | 0.698 [0.569–0.836] | 0.607 | 0.870 | 0.447 | 0.488 | 0.850 | |
Nomogram | 0.823 [0.714–0.931] | 0.754 | 0.826 | 0.711 | 0.633 | 0.871 | |