Table 4 Ranking of ML models based on statistical performance metrics using the hold-out validation method.

From: Forecasting compressive strength of concrete containing rice husk ash using various machine learning algorithms

 

R2

Score

MAPE

Score

RMSE

Score

VAF [%]

Score

a20-index

Score

Ranking score

DTR

0.3401

1

0.20

1

12.33

1

60.1

1

0.64

1

5

SVR

0.9647

12

0.04

8

2.85

12

98.2

12

0.96

7

51

NuSVR

0.9418

11

0.05

7

3.66

10

97.1

10

0.96

7

45

GPR

0.9400

10

0.05

7

3.50

11

97.3

11

0.97

8

47

XGBoost

0.7391

2

0.11

3

7.75

2

86.4

2

0.82

2

11

RF

0.7659

4

0.12

2

7.34

4

87.6

4

0.83

3

17

ETR

0.8009

5

0.10

4

6.77

5

89.8

5

0.87

4

23

GBR

0.7595

3

0.11

3

7.44

3

87.2

3

0.83

3

15

HGBR

0.8060

6

0.11

3

6.69

6

89.9

6

0.87

4

25

ANN

0.8947

8

0.07

5

4.92

8

94.6

8

0.95

6

35

VR

0.8158

7

0.10

4

6.51

7

90.3

7

0.88

5

30

MLPR

0.9126

9

0.06

6

4.49

9

95.6

9

0.97

8

41