Table 5 Evaluation metrics of ensemble machine learning algorithms using ROS data under default and tuned hyperparameter settings.

From: Comparative performance of bagging and boosting ensemble models for predicting lumpy skin disease with multiclass-imbalanced data

Ensemble

model

Stage

Class

Accuracy

Precision

Recall

F1-score

AUC

ROS

ROS + Tuning

ROS

ROS + Tuning

ROS

ROS + Tuning

ROS

ROS + Tuning

ROS

ROS + Tuning

DT

Training

Healthy

70.29%

70.29%

0.64

0.64

0.87

0.87

0.74

0.74

0.83

0.83

Diseased

0.64

0.64

0.63

0.63

0.64

0.64

Dead

0.82

0.82

0.66

0.66

0.74

0.74

Test

Healthy

66.35%

66.35%

0.66

0.66

0.95

0.95

0.78

0.78

0.82

0.82

Diseased

0.70

0.70

0.52

0.52

0.60

0.60

Dead

0.44

0.44

0.12

0.12

0.19

0.19

RF

Training

Healthy

87.75%

88.8%

0.94

0.95

0.82

0.84

0.87

0.89

0.95

0.95

Diseased

0.86

0.84

0.81

0.85

0.84

0.85

Dead

0.85

0.88

1.00

0.97

0.92

0.92

Test

Healthy

80.29%

82%

0.95

0.96

0.80

0.80

0.87

0.87

0.90

0.93

Diseased

0.64

0.65

0.79

0.86

0.70

0.74

Dead

0.44

0.57

0.89

0.89

0.59

0.70

AdaBoost

Training

Healthy

83%

81%

0.92

0.81

0.76

0.79

0.83

0.80

0.90

0.97

Diseased

0.77

0.80

0.78

0.71

0.78

0.75

Dead

0.83

0.82

0.96

0.93

0.89

0.87

Test

Healthy

73.56%

74.5%

0.92

0.91

0.73

0.78

0.81

0.84

0.84

0.92

Diseased

0.55

0.57

0.75

0.68

0.63

0.62

Dead

0.39

0.28

0.78

0.56

0.52

0.37

GBoost

Training

Healthy

64.6%

88%

0.82

0.92

0.67

0.84

0.74

0.88

0.96

0.97

Diseased

0.55

0.88

0.66

0.80

0.60

0.84

Dead

0.61

0.85

0.61

1.00

0.61

0.92

Test

Healthy

67%

82%

0.89

0.93

0.71

0.83

0.79

0.87

0.92

0.97

Diseased

0.57

0.65

0.64

0.73

0.61

0.69

Dead

0.19

0.44

0.33

0.89

0.15

0.59

XGBoost

Training

Healthy

88%

88.8%

0.93

0.94

0.82

0.84

0.87

0.89

0.97

0.97

Diseased

0.85

0.85

0.84

0.85

0.84

0.85

Dead

0.87

0.88

0.97

0.97

0.92

0.92

Test

Healthy

72.28%

81.25%

0.88

0.93

0.77

0.82

0.82

0.87

0.93

0.93

Diseased

0.63

0.65

0.64

0.79

0.64

0.71

Dead

0.26

0.57

0.65

0.89

0.38

0.70