Table 8 Comparative analysis of the MDDoSFL-DRLFLO method with other models on the ToN-IoT dataset.
TON-IoT dataset | ||||
|---|---|---|---|---|
Classifier | \(\:Acc{u}_{y}\) | \(\:Pre{c}_{n}\) | \(\:Rec{a}_{l}\) | \(\:{F1}_{score}\) |
MDDoSFL-DRLFLO | 99.52 | 92.78 | 90.43 | 91.33 |
ANN Algorithm | 99.44 | 91.67 | 90.03 | 90.58 |
TP2SF Method | 98.84 | 85.70 | 89.97 | 90.10 |
Densely-Resnet | 92.99 | 91.41 | 87.72 | 86.93 |
DFF Approach | 97.35 | 88.48 | 86.99 | 87.54 |
DenseNet Method | 98.57 | 88.64 | 89.05 | 89.86 |
XGBoost Model | 98.30 | 86.10 | 89.46 | 88.07 |
NB | 97.29 | 89.95 | 87.72 | 88.43 |