Table 5 XGBoost model hyperparameters and performance before and after feature selection.

From: Data-augmented machine learning for personalized carbohydrate-protein supplement recommendation for endurance

Category

Parameter/Metric

Before feature selection

After feature selection

Hyperparameter tuning

Optimal CV score

  

(neg_MAE)

-627.79

-555.41

Optimal hyperparameters

Subsample

1

0.9

reg_lambda

0.5

0.5

reg_alpha

0.5

1

n_estimators

200

500

max_depth

7

5

Learning_rate

0.1

0.05

Gamma

0.1

0.2

colsample_bytree

0.8

0.9

Average train performance

MAE

104.22

68.66

RMSE

122.10

90.90

R2 score

0.96

0.98

Average test performance

MAE

643.80

587.65

RMSE

810.90

742.98

R2 score

0.32

0.42