Table 6 Comparison of model performance on the test set with and without data augmentation.
Model | Condition | Key optimized hyperparameters | CV performance (on development set) | Final performance (on hold-out test set) | ||||||
|---|---|---|---|---|---|---|---|---|---|---|
CV train MAE | CV train R2 | CV valid MAE | CV valid RMSE | CV valid R2 | Test MAE | Test RMSE | Test R2 | |||
XGBoost | Baseline | n_estimators = 500, max_depth = 5, learning_rate = 0.05 | 68.66 | 0.98 | 587.65 | 742.96 | 0.42 | 642.40 | 751.26 | 0.48 |
Augmented | n_estimators = 400, max_depth = 3, learning_rate = 0.05 | 276.98 | 0.84 | 614.90 | 759.11 | 0.39 | 632.05 | 715.97 | 0.53 | |
SVR | Baseline | kernel=’poly’, C = 500, degree = 3 | 356.48 | 0.65 | 644.75 | 830.19 | 0.24 | 620.12 | 773.31 | 0.45 |
Augmented | kernel=’rbf’, C = 500, gamma=’auto’ | 284.18 | 0.73 | 660.34 | 840.97 | 0.26 | 644.96 | 765.48 | 0.46 | |
MLP | Baseline | hidden_dims=[32, 16], learning_rate = 0.001, batch_size = 16 | 434.94 | 0.71 | 638.54 | 785.69 | 0.33 | 556.96 | 686.76 | 0.57 |
Augmented | hidden_dims=[128, 64], learning_rate = 0.005, batch_size = 16 | 256.23 | 0.86 | 706.37 | 868.69 | 0.20 | 641.48 | 771.49 | 0.46 | |