Table 2 Model training and validation logs.
From: Software application in early blight detection in tomatoes using modified MobileNet architecture
Epoch | Loss | Accuracy | Precision | Recall | F1-score | Val. loss | Val. accuracy | Val. precision |
|---|---|---|---|---|---|---|---|---|
1 | 0.5890 | 0.5475 | 1.0000 | 0.1216 | 0.6800 | 0.5302 | 0.5347 | 1.0000 |
2 | 0.5112 | 0.8449 | 1.0000 | 0.6990 | 0.6800 | 0.5058 | 0.8107 | 1.0000 |
3 | 0.4808 | 0.9281 | 1.0000 | 0.8604 | 0.6800 | 0.4874 | 0.9041 | 1.0000 |
4 | 0.4766 | 0.9511 | 0.9990 | 0.9060 | 0.6800 | 0.4712 | 0.9545 | 1.0000 |
5 | 0.4619 | 0.9750 | 1.0000 | 0.9516 | 0.6800 | 0.4608 | 0.9447 | 1.0000 |
6 | 0.4499 | 0.9839 | 0.9990 | 0.9696 | 0.6800 | 0.4433 | 0.9946 | 1.0000 |
7 | 0.4384 | 0.9878 | 1.0000 | 0.9763 | 0.6800 | 0.4333 | 0.9936 | 1.0000 |
8 | 0.4287 | 0.9936 | 1.0000 | 0.9877 | 0.6800 | 0.4243 | 0.9951 | 1.0000 |
9 | 0.4207 | 0.9946 | 0.9962 | 0.9934 | 0.6800 | 0.4186 | 0.9892 | 1.0000 |
10 | 0.4136 | 0.9912 | 0.9971 | 0.9858 | 0.6800 | 0.4114 | 0.9946 | 1.0000 |
Epoch | Val. recall | Val. F1- score | Learning rate | |||||
|---|---|---|---|---|---|---|---|---|
1 | 0.0969 | 0.6800 | 0.0010 | |||||
2 | 0.6325 | 0.6800 | 0.0010 | |||||
3 | 0.8139 | 0.6800 | 0.0010 | |||||
4 | 0.9117 | 0.6800 | 0.0010 | |||||
5 | 0.8927 | 0.6800 | 0.0010 | |||||
6 | 0.9896 | 0.6800 | 0.00090484 | |||||
7 | 0.9877 | 0.6800 | 0.00081873 | |||||
8 | 0.9905 | 0.6800 | 0.00074082 | |||||
9 | 0.9791 | 0.6800 | Learning rate | |||||
10 | 0.9896 | Val. F1- score | 0.0010 |