Table 4 The Cronbach’s alpha of the variables and the item.

From: Risk-indexed artificial neural network for predicting duration and cost of irrigation canal-lining projects using survey-based calibration and python validation

Factor ID

Scale mean if item deleted

Scale variance if item deleted

Corrected item- total correlation

Squared multiple correlation

Cronbach’s alpha if item deleted

CD2

123.51

1604.976

0.762

0.734

0.950

CD4

123.74

1603.335

0.736

0.683

0.951

CD5

124.20

1613.879

0.735

0.778

0.951

CD6

123.58

1591.118

0.776

0.782

0.950

CC3

125.21

1673.789

0.430

0.671

0.955

CC6

124.16

1621.182

0.722

0.791

0.951

CC7

123.13

1597.252

0.799

0.770

0.950

CO5

124.09

1615.825

0.763

0.701

0.951

TO3

124.19

1582.945

0.743

0.727

0.951

TC1

124.64

1606.286

0.715

0.608

0.951

TP3

123.70

1585.742

0.795

0.788

0.950

TP5

123.26

1586.462

0.817

0.802

0.950

TP7

123.95

1606.582

0.784

0.781

0.950

TP10

123.71

1583.095

0.841

0.866

0.949

TP12

123.96

1595.891

0.771

0.713

0.950

TR4

126.09

1691.019

0.400

0.408

0.955

ER5

124.44

1614.664

0.627

0.590

0.953

FR1

126.07

1685.062

0.369

0.473

0.956

FR2

124.70

1623.299

0.677

0.601

0.952

SR4

124.63

1614.636

0.680

0.625

0.952

  1. CD cost related factor in design phase, CC cost related factor in construction phase, CO cost related factor in design phase, TO time related factor due to owner, TC time related factor due to contractor, TP time related factor due to project, TR technical risk related factor, ER environment risk related factor, FR financial risk related factor, SR social risk related factor.