Table 1 Degradation rate ( \(\:\varvec{\beta\:}\) ), half-lives ( \(\:{\varvec{t}}_{1/2}\:\)), destruction cross section ( \(\:\varvec{\upsigma\:}\) ) and degradation percentage for pure 2, 6-dhn, along with vibrational mode assignment (See Fig. 3 caption for the legend). Half-life values are evaluated both relative to the annual mean UV flux at Jezero crater (estimated using the COMIMART model80 which includes state-of-the-art dust radiative properties81,82 and corrected by Mastcam-Z opacities37,83) and relative to the theoretical Martian UV flux estimated by patel et al. 12 (assuming dust free atmosphere at the noontime equator4). The last row weighting procedure is showed in supplementary table S3.

From: Photostability of polycyclic aromatic hydrocarbons in hydrated magnesium sulfate under Martian ultraviolet irradiation to assist organics detection on Mars

Band

[\(\:{\varvec{c}\varvec{m}}^{-1}\)]

2,6-dihydroxynaphthalene vibrational mode

\(\:\varvec{\beta\,}\left[{{10}^{-4}\varvec{s}}^{-1}\right]\)

\(\:{\varvec{t}}_{1/2}\:\left[\varvec{s}\varvec{o}\varvec{l}\right]\) Jezero crater flux

\(\:{\varvec{t}}_{1/2}\:\left[\varvec{s}\varvec{o}\varvec{l}\right]\) Patel et al., 2002 flux

\(\:\varvec{\sigma\,}//\left[{10}^{-21}{\varvec{c}\varvec{m}}^{2}\right]\)

Degradation percentage DP [%]

4326

Combination δipCH and δipOH + 𝜈CH *

\(\:6\pm\:3\)

8 ± 3

\(\:5\pm\:2\)

\(\:2.4\pm\:1.0\)

\(\:1.2\pm\:0.2\)

2899

Combination δipCH and δipOH and 𝜈CC + δipCH and 𝜈CC and δOH *

\(\:1.5\pm\:1.2\)

36 ± 26

\(\:21\pm\:17\)

\(\:0.5\pm\:0.4\)

\(\:2.3\pm\:1.3\)

2874

Fundamental 𝜈CH */**

\(\:2.2\pm\:0.5\)

24 ± 6

\(\:14\pm\:3\)

\(\:0.8\pm\:0.2\)

\(\:1.0\pm\:0.1\)

2706

Combination δipCH and δipOH + δipCH and 𝜈CC (adjacent to OH) and δipOH *

\(\:1.3\pm\:0.4\)

40 ± 11

\(\:23\pm\:7\)

\(\:0.5\pm\:0.1\)

\(\:1.5\pm\:0.3\)

2687

Combination 𝜈C-OH and ring breathing and δCH + δipCH and δipOH and 𝜈CC *

\(\:2.0\pm\:1.0\)

27 ± 14

\(\:16\pm\:8\)

\(\:0.7\pm\:0.4\)

\(\:2.0\pm\:0.5\)

2548

Combination δipCH and δipOH + 𝜈C-OH and ring breathing and δCH *

\(\:1.5\pm\:0.3\)

36 ± 7

\(\:21\pm\:4\)

\(\:0.5\pm\:0.1\)

\(\:0.8\pm\:0.1\)

2448

Combination δipCH and δipOH + δipCH and δipOH *

\(\:3.2\pm\:0.7\)

18 ± 5

\(\:10\pm\:2\)

\(\:1.1\pm\:0.3\)

\(\:1.3\pm\:0.1\)

2133

Combination δoopCH + δipCH and δipOH *

\(\:1.9\pm\:0.9\)

28 ± 13

\(\:16\pm\:8\)

\(\:0.7\pm\:0.3\)

\(\:2.8\pm\:0.7\)

2122

Combination δipCH and δipC-OH + 𝜈CC and δipOH and δipCH *

\(\:1.9\pm\:0.8\)

29 ± 13

\(\:17\pm\:8\)

\(\:0.7\pm\:0.3\)

\(\:0.4\pm\:0.1\)

2089

Combination δipCH and 𝜈CC and δOH + ring deformation *

\(\:3.2\pm\:0.9\)

17 ± 5

\(\:10\pm\:3\)

\(\:1.1\pm\:0.3\)

\(\:0.4\pm\:0.1\)

2071

Combination δipCH and 𝜈CC and δipOH + ring deformation *

\(\:4.2\pm\:1.4\)

13 ± 5

\(\:7\pm\:3\)

\(\:1.5\pm\:0.5\)

\(\:1.4\pm\:0.2\)

2006

Combination δoopCH + δipCH *

\(\:3.6\pm\:1.3\)

15 ± 5

\(\:8\pm\:3\)

\(\:1.3\pm\:0.5\)

\(\:2.6\pm\:0.3\)

1312

Fundamental δipOH */**

\(\:11\pm\:2\)

5 ± 1

\(\:2.9\pm\:0.6\)

\(\:3.9\pm\:0.9\)

\(\:0.55\pm\:0.04\)

1281

Fundamental δipCH */**

\(\:2.7\pm\:0.6\)

20 ± 4

\(\:11\pm\:3\)

\(\:1.0\pm\:0.2\)

\(\:0.8\pm\:0.1\)

1236

Fundamental δipCH */**

\(\:5.7\pm\:1.4\)

9 ± 2

\(\:5.4\pm\:1.4\)

\(\:2.1\pm\:0.5\)

\(\:0.51\pm\:0.04\)

1215

Fundamental δipOH *

\(\:4.4\pm\:0.7\)

12 ± 2

\(\:7.0\pm\:1.1\)

\(\:1.6\pm\:0.3\)

\(\:1.2\pm\:0.1\)

1150

Fundamental δipCH and δipOH *

\(\:3.3\pm\:0.8\)

16 ± 4

\(\:9\pm\:2\)

\(\:1.2\pm\:0.3\)

\(\:0.31\pm\:0.03\)

1065

Combination δoopCH + δoopCH *

\(\:3.4\pm\:0.9\)

16 ± 4

\(\:9\pm\:2\)

\(\:1.2\pm\:0.3\)

\(\:30\pm\:3\)

1040

Combination δoopOH + δoopCH *

\(\:6\pm\:3\)

10 ± 5

\(\:6\pm\:3\)

\(\:2.0\pm\:1.0\)

\(\:2.2\pm\:0.4\)

Weighted average values

\(\:2.3\pm\:0.2\)

\(\:10\pm\:1\)

\(\:5.7\pm\:0.4\)

\(\:0.8\pm\:0.1\)

\(\:0.55\pm\:0.02\)

  1. * 80 ; ** DFT calculations (this work).