Table 1 Notations and definitions used in the proposed CyberDetect-MLP framework.

From: CyberDetect MLP a big data enabled optimized deep learning framework for scalable cyberattack detection in IoT environments

Symbol

Description

\(\:X\)

Original feature value

\(\:{X}^{{\prime\:}}\)

Normalized feature value after Min-Max scaling

\(\:{X}_{min}\)

Minimum value of a feature

\(\:{X}_{max}\)​

Maximum value of a feature

\(\:{h}^{\left(l\right)}\)

Output of the \(\:{l}^{th}\) hidden layer

\(\:{h}^{\left(l-1\right)}\)

Input to the \(\:{l}^{th}\) hidden layer

\(\:{W}^{\left(l\right)}\)

Weight matrix of the \(\:{l}^{th}\) layer

\(\:{b}^{\left(l\right)}\)

Bias vector of the \(\:{l}^{th}\) layer

\(\:\sigma\:\left(\bullet\:\right)\)

Activation function (ReLU)

\(\:{z}_{j}\)

Logit output for class j before softmax activation

\(\:K\)

Total number of classes (attack types)

\(\:P\left(y=j\:|\:x\right)\)

Predicted probability of class j for input \(\:x\)

\(\:{y}_{ij}\)

True label indicator for instance i and class j

\(\:{\widehat{y}}_{ij}\)

Predicted probability for instance iii and class j

\(\:{\theta\:}_{t}\)

Model parameter at iteration t

\(\:\alpha\:\)

Learning rate

\(\:{\widehat{m}}_{t}\)

Bias-corrected first moment estimate (mean of gradients)

\(\:{\widehat{v}}_{t}\)

Bias-corrected second moment estimate (uncentered variance)

\(\:\epsilon\:\)

Small constant to avoid division by zero in optimization updates

\(\:{\alpha\:}_{t}\)

Learning rate at epoch t in cosine annealing schedule

\(\:{\alpha\:}_{min}\)​

Minimum learning rate

\(\:{\alpha\:}_{max}\)

Maximum learning rate

\(\:T\)

Total number of training epochs in the learning rate schedule