Table 6 Performance comparison of CyberDetect-MLP with baseline models in IoT cyberattack detection.

From: CyberDetect MLP a big data enabled optimized deep learning framework for scalable cyberattack detection in IoT environments

Model/study

Approach

Dataset

Accuracy (%)

Scalability

Explainability

Vinayakumar et al. (2019)

CNN + RNN

NSL-KDD, UNSW-NB15

97.01

Moderate

Low

Alrashdi et al. (2019)

ML (RF, SVM)

TON_IoT (subset)

94.67

Limited

Medium

Ferrag et al. (2020)

Deep Learning Survey

Various IDS Datasets

94–97

Varies

Not applicable

Shone et al. (2018)

Autoencoder + DNN

NSL-KDD

96.21

Low

Low

Lopez-Martin et al. (2017)

CVAE (VAE)

Custom IoT dataset

95.03

Low

Medium

Proposed CyberDetect-MLP

Optimized MLP

TON_IoT (full)

98.87

High

High (Grad-CAM)