Table 2 Betweenness Centrality (BC) Computation for a graph in Fig. 1b.
From: Dangling centrality highlights critical nodes by evaluating network stability through link removal
For Node ID 1: The BWC for node 1 is 0 | For Node ID 4: \([\text{2,6}]\to 1/3\) \([\text{3,5}]\to 1/3\) \([\text{5,3}]\to 1/3\) \(\left[\text{6,2}\right]\to 1/3\). The sum of all sets is the BWC of node 4 i.e. 1.3333 |
For Node ID 2: \([\text{1,3}]\to 1/1\) \([\text{1,4}]\to 1/2\) \(\left[\text{3,1}\right]\to 1/1\) \([\text{3,5}]\to 1/3\) \([\text{4,1}]\to 1/2\) \([\text{5,3}]\to 1/3\) The sum of all sets is the BWC of node 2 i.e. 3.6667 | For Node ID 5: \([\text{1,4}]\to 1/2\) \([\text{1,6}]\to 1/1\) \([\text{2,6}]\to 1/3\) \([\text{4,1}]\to 1/2\) \([\text{6,1}]\to 1/1\) \(\left[\text{6,2}\right]\to 1/3\) The sum of all sets is the BWC of node 5 i.e. 3.6667 |
For Node ID 3: \([\text{2,6}]\to 1/3\) \([\text{6,2}]\to 1/3\) The sum of all sets is the BWC of node 3 i.e. 0.6667 | For Node ID 6: \(\left[\text{3,5}\right]\to 1/3\) \(\left[\text{5,3}\right]\to 1/3\). The sum of all sets is the BWC of node 6 i.e. 0.6667 |