Table 3 Bayesian central estimates of slope coefficients of single-level and multilevel models.

From: A multilevel Bayesian approach to climate-fueled migration and conflict

Model

Condit. distribution

(4)

Normal

(5)

NB

(6)

NB

(7)

NB

TA

0.71

0.08

0.12

0.19

(0.30)

(0.12)

(0.13)

(0.12)

DL

0.08

0.02

0.01

0.01

(0.02)

(0.01)

(0.02)

(0.02)

PA

\(-0.47\)

\(-0.04\)

\(-0.03\)

\(-0.03\)

(0.31)

(0.16)

(0.17)

(0.16)

\(\overline{TA}_i\)

  

\(-11.6\)

\(-11.13\)

  

(2.37)

(2.23)

\(\overline{DL}_i\)

  

0.37

0.36

  

(0.19)

(0.18)

\(\overline{PA}_i\)

  

1.64

1.85

  

(3.07)

(3.07)

\(\overline{TA}_{my}\)

   

0.57

   

(0.29)

\(\overline{DL}_{my}\)

   

\(-0.07\)

   

(0.04)

\(\overline{C}_{my}\)

   

0.01

   

(0.00)

Region

FEs

FEs

Pooled

Pooled

Month

FEs

FEs

FEs

Pooled

N

2808

2808

2808

2808

ELPD

\(-8090.2\)

\(-2861.7\)

\(-2833.8\)

\(-2809.8\)

\(\text {ELPD}_{\text {diff}}\)

\(-5280.3\)

\(-51.8\)

\(-24\)

0

SE[\(\text {ELPD}_{\text {diff}}\)]

186.4

13.8

9.5

0

  1. For each regressor, the table display summaries of its marginal posterior distribution: the distribution’s median (top sub-row) and an estimate of the distribution’s standard deviation (bottom sub-row, in parentheses) based on a scaling of the median absolute deviation around that median. \(\text {ELPD}_{\text {diff}}\) corresponds to the difference in expected log predictive density (ELPD) between models, and SE [\(\text {ELPD}_{\text {diff}}\)] to the standard error of that difference, where the reference is the model with the largest ELPD (model (7)).