Table 7 Comparison with real-time object detectors on SIMD-test.

From: Multi path attention and scale aware fusion for accurate object detection in remote sensing imagery

Methods

#Epochs

#Params

GFLOPs

FPS

AP

\({\text {AP}}_{50}\)

\({\text {AP}}_{75}\)

\({\text {AP}}_S\)

\({\text {AP}}_M\)

\({\text {AP}}_L\)

YOLO-based real-time object detectors

 YOLOv8-N

300

6.0M

8.1

229.8

60.8

77.3

70.7

23.6

53.4

64.9

 YOLOv8-S

300

21.5

28.5

216.2

65.06

81.4

76.0

29.1

56.8

69.5

 YOLOv8-M

300

49.6

78.7

162.1

63.98

80.8

74.0

27.5

57.7

69.9

 YOLOv8-L

300

83.61

165.5

104.5

65.75

81.9

75.2

25.1

58.7

68.6

 YOLOv11-N

300

5.24

6.5

162.1

62.78

79.3

72.7

25.3

57.3

65.2

 YOLOv11-S

300

18.32

21.6

160.0

63.8

80.7

74.8

30.4

56.5

69.5

 YOLOv11-M

300

38.67

68.2

129.1

64.7

81.0

74.6

31.1

57.3

69.5

 YOLOv11-L

300

48.87

87.3

85.6

65.33

81.8

75.4

29.1

58.7

69.1

 YOLOv12-N

300

5.21

6.0

82.0

61.26

77.9

71.6

22.2

54.1

65.0

 YOLOv12-S

300

17.81

19.6

94.2

63.0

80.3

72.4

24.5

55.5

68.0

 YOLOv12-M

300

37.93

59.5

79.6

64.2

81.1

74.6

24.0

56.7

68.8

 YOLOv12-L

300

50.02

80.9

47.4

64.87

80.1

74.7

22.9

57.1

68.4

RTDETR-based real-time object detectors

 RT-DETR-r18

160

40.5

58.3

45.3

60.8

76.4

71.2

21.5

57.4

62.3

 RT-DETR-r34

160

60.12

90.6

40.6

61.6

78.8

71.3

21.1

55.2

66.7

 RT-DETR-r50

160

82.13

134.8

26.8

61.98

79.2

72.0

22.9

57.2

64.6

 D-Fine-N

160

14.5

7.13

241.1

58.3

74.9

68.9

20.0

54.6

61.2

 D-Fine-S

160

39.3

24.8

151.28

62.1

79.2

71.0

23.6

57.7

65.8

 DEIM-N

160

14.5

7.13

198.58

59.9

75.7

69.2

29.3

55.9

61.4

 DEIM-S

160

39.3

24.88

167.53

63.3

79.0

73.1

26.6

58.8

64.4

 HyperFusion-DEIM-N

160

134.1

79.71

296.33

64.5

81.2

73.8

27.3

60.4

66.9

 HyperFusion-DEIM-S

160

166.8

103.6

224.18

65.2

83.3

74.5

30.2

61.2

68.9