Table 12 Comparative analysis of the proposed criminal suspect identification model against ML and DL models under adversarial conditions using FGSM on the LFW dataset.
Model | Accuracy | F-measure | G-means | AUC |
|---|---|---|---|---|
MISSL28 | 63.032 ± 0.092 | 68.867 ± 0.082 | 69.488 ± 0.031 | 0.612 ± 0.075 |
CNBA29 | 64.549 ± 0.009 | 70.190 ± 0.041 | 70.822 ± 0.054 | 0.620 ± 0.056 |
FAHP33 | 65.398 ± 0.062 | 70.963 ± 0.024 | 71.587 ± 0.035 | 0.631 ± 0.085 |
DL-ACO36 | 67.511 ± 0.013 | 72.202 ± 0.068 | 72.929 ± 0.012 | 0.692 ± 0.039 |
DCNN37 | 73.874 ± 0.056 | 77.236 ± 0.029 | 77.920 ± 0.066 | 0.677 ± 0.051 |
MTCNN38 | 76.241 ± 0.064 | 79.706 ± 0.072 | 80.399 ± 0.080 | 0.696 ± 0.062 |
DNVPT4 | 81.897 ± 0.075 | 86.259 ± 0.013 | 86.773 ± 0.096 | 0.755 ± 0.038 |
FECNN39 | 77.009 ± 0.072 | 81.085 ± 0.019 | 81.712 ± 0.054 | 0.704 ± 0.000 |
Wavelet2 | 80.455 ± 0.030 | 84.602 ± 0.099 | 85.122 ± 0.035 | 0.743 ± 0.018 |
CLSTM40 | 77.662 ± 0.095 | 82.087 ± 0.025 | 82.750 ± 0.008 | 0.713 ± 0.033 |
QN-FR41 | 76.511 ± 0.013 | 77.202 ± 0.068 | 78.929 ± 0.012 | 0.741 ± 0.039 |
DNN1 | 79.465 ± 0.020 | 83.407 ± 0.076 | 83.991 ± 0.008 | 0.727 ± 0.012 |
YOLOv8-FI42 | 78.144 ± 0.039 | 79.847 ± 0.094 | 80.674 ± 0.003 | 0.742 ± 0.012 |
FVG-FR43 | 78.693 ± 0.016 | 78.923 ± 0.022 | 79.167 ± 0.053 | 0.752 ± 0.030 |
QWE-DNN44 | 79.408 ± 0.035 | 80.821 ± 0.041 | 85.981 ± 0.025 | 0.767 ± 0.081 |
FacialCueNet45 | 74.811 ± 0.094 | 78.216 ± 0.042 | 78.933 ± 0.095 | 0.690 ± 0.009 |
GAN-DSAEAN 47 | 80.560 ± 0.070 | 81.478 ± 0.061 | 82.324 ± 0.047 | 0.789 ± 0.076 |
Proposed | 85.380 ± 0.027 | 89.153 ± 0.064 | 89.690 ± 0.078 | 0.792 ± 0.049 |