Table 3 Performance comparison among models in bone cancer classification.

From: Enhancing bone cancer detection through optimized pre trained deep learning models and explainable AI using the osteosarcoma tumor assessment dataset

Model

Task

Accuracy (%)

Precision

Recall

F1-score

ROC-AUC

ResNet50

Binary classification

96.8

0.97

0.96

0.97

0.98

Multi-class

96.2

0.96

0.95

0.96

0.97

EfficientNet-B4

Binary classification

97.9

0.98

0.98

0.98

0.99

Multi-class

97.3

0.97

0.97

0.97

0.98

DenseNet121

Binary classification

97.2

0.97

0.97

0.97

0.98

Multi-class

96.5

0.96

0.96

0.96

0.97

InceptionV3

Binary classification

96.5

0.96

0.96

0.96

0.97

Multi-class

96.1

0.96

0.95

0.95

0.96

VGG16

Binary classification

96.0

0.96

0.96

0.96

0.96

Multi-class

95.8

0.95

0.95

0.95

0.95