Table 16 Performance analysis of statistical significance testing with FCE images.

From: Feature fusion context attention gate UNet for detection of polycystic ovary syndrome

Model

Raw accuracy (%)

FCE accuracy (%)

\(\overline{{{\text{Diff}}}}\)

\(\overline{{{\text{Var}}}}\)

SD

t-value

DOF

p-value

95% CI (%)

DenseNet

68.27

69.43

1.16

0.16

0.40

2.90

4

0.045

0.03–2.29

VGG

71.23

72.62

1.39

0.16

0.40

3.47

4

0.025

0.31–2.47

AlexNet

72.91

73.51

0.60

0.16

0.40

1.50

4

0.20

−0.44–1.64

ResNet

76.25

77.44

1.19

0.16

0.40

2.98

4

0.042

0.12–2.26

U-Net

78.64

79.32

0.68

0.16

0.40

1.70

4

0.16

−0.30–1.66

Attention U-Net

82.36

83.78

1.42

0.16

0.40

3.55

4

0.023

0.36–2.48

FCAU-Net

90.51

99.89

9.38

0.25

0.50

42.00

4

< 0.001

8.50–10.26