Table 19 FCAU-Net model complexity and efficiency metrics.

From: Feature fusion context attention gate UNet for detection of polycystic ovary syndrome

Model

Number of parameters (M)

FLOPS ( X 109)

Computation overhead

Raw images

FCE images

Raw images

FCE images

Raw images

FCE images

DenseNet

8.1

8.1

5.6

5.5

Moderate

Moderate

VGG

14.7

14.7

7.8

7.7

High

High

AlexNet

5.6

5.6

3.5

3.4

Low

Low

ResNet

11.2

11.2

6.7

6.6

Moderate

Moderate

U-Net

12.8

12.8

9.4

9.3

High

High

Attention U-Net

14.2

14.2

10.2

10.1

High

High

Proposed FCAU-Net

7.3

7.3

4.9

4.8

Low

Low