Table 20 Performance analysis of SOTA methods.

From: Feature fusion context attention gate UNet for detection of polycystic ovary syndrome

Model

Accuracy (%)

AResUNet1

98.00

Enhanced U-Net + ResNet3

97.80

GAN + CNN4

96.00

PCOS-WaveConvNet6

97.90

PCONet23

98.12

VGGNet16 + Stacking Ensemble8

98.90

VGG16 (modified last 4 layers)10

92.11

ASPPNet + ResNet11

98.79

CNN + BiLSTM12

97.74

ESDPCOS (CNN + GLCM)13

96.06

AMCNN14

98.79

CNN + KNN clustering15

97.00

MLOD16

96.00

Ocys-Net17

95.93

HHO-DQN18

96.50

ITL-CNN19

98.90

Ensemble (VGG16, ResNet50, MobileNet)20

95.00

Watershed + contour analysis21

97.80

CR-UNet22

91.20

Hybrid CNN23

95.00

SqueezeNet26

97.63

InceptionV3 + TL28

98.48

2D CNN + SVM, DT, RF29

98.07

Sequential 2D CNN + wrapper FS31

98.67

Elman NN + Gabor Wavelet32

78.10

BPA (modified LM optimization)35

93.92

EfficientNetB6 + Attention UNet38

98.12

Threshold-based segmentation39

97.00

DLNNSVM40

97.32

GrabCut + FL-SNNM41

97.99

GIST-MDR42

93.82

QEI-SAM63

99.31

Deeplabv364

94.60

CystNet68

97.82

TL-CNN69

97.20

DC-UNet70

97.54

AdaResU-Net71

98.47

FCAU-Net

99.89