Table 2 Performance comparison of deep learning models (LSTM, GRU, and RNN) over different Epochs.

From: Resolving passage ambiguity in machine reading comprehension using lightweight transformer architectures

Model

Epochs #

Train Acc

Valid Acc

Train Loss

Valid Loss

Time (sec)

LSTM

1

51.52

40.28

1.35

1.50

 

5

84.50

80.28

0.50

0.65

7223

10

91.20

89.28

0.23

0.43

 

15

91.20

89.60

0.21

0.40

 

GRU

1

49.52

45.28

1.40

1.55

 

5

84.00

81.28

0.55

0.70

 

10

90.00

88.80

0.34

0.50

2281

15

90.25

89.14

0.30

0.45

 

RNN

1

45.28

40.25

1.45

1.60

 

5

80.50

75.50

0.60

0.75

4225

10

88.90

86.50

0.39

0.54

 

15

89.01

87.39

0.35

0.49

Â