Table 4 Meta-regression analysis of factors associated with AUC performance.
Variable | Comparison | β coefficient | Standard error | p-value |
|---|---|---|---|---|
Country income level | High-income versus low/middle-income | 0.0561 | 0.1041 | 0.591 |
Population type | General versus disease-specific | − 0.1919 | 0.0257 | < 0.001 |
Sample size | ≥ 2000 vs < 2000 participants | 0.0402 | 0.1609 | 0.803 |
TRIPOD + AI score | ≥ 35 vs < 35 points | − 0.1341 | 0.0312 | < 0.001 |
Algorithm type | Neural Networks versus tree-based | 0.1355 | 0.0267 | < 0.001 |
Algorithm type | Linear/statistical versus tree-based | − 0.1067 | 0.1097 | 0.3334 |
Algorithm type | Ensemble/hybrid versus tree-based | − 0.0043 | 0.1057 | 0.9674 |
Algorithm type | Other models versus tree-based | − 0.0740 | 0.2242 | 0.7421 |
Confidence interval | Imputed versus non-imputed CI | 0.1090 | 0.0410 | 0.0093 |
Outcome prevalence | 20–39% versus 0–19% | 0.0818 | 0.0425 | 0.0578 |
Outcome prevalence | 40% or more versus 0–19% | − 0.0253 | 0.0735 | 0.7318 |