Table 1 Comparison of different models on MPII human and OCHuman datasets for pose estimation Task.

From: Deep learning-based approaches for human pose estimation in interdisciplinary physics applications

Model

MPII Human Dataset

OCHuman Dataset

Accuracy

Recall

F1 Score

AUC

Accuracy

Recall

F1 Score

AUC

OpenPose16

84.21

82.13

83.67

85.89

80.32

77.89

79.23

81.45

AlphaPose51

86.34

84.56

85.21

88.12

82.54

80.11

81.67

84.23

DeepCut52

83.78

81.42

82.94

85.03

79.12

76.23

77.56

80.14

HRNet18

88.41

86.35

87.12

89.78

83.67

81.42

82.83

85.94

SimpleBaseline53

85.67

83.23

84.15

87.34

81.56

78.91

80.23

83.45

DARKPose54

87.12

85.34

86.03

88.45

82.89

80.57

81.94

84.78

ViTPose55

89.34

87.23

87.89

90.12

84.45

82.67

83.34

86.01

TokenPose56

89.78

87.89

88.01

90.34

84.89

83.12

84.02

86.45

MixSTE57

90.01

88.12

88.45

90.67

85.12

83.78

84.73

87.02

Ours (HSTPN)

90.21

88.45

89.12

91.56

85.67

83.78

84.92

87.34