Table 2 Comparison of different models on crowdpose and sportspose datasets for pose estimation Task.

From: Deep learning-based approaches for human pose estimation in interdisciplinary physics applications

Model

CrowdPose Dataset

SportsPose Dataset

Accuracy

Recall

F1 Score

AUC

Accuracy

Recall

F1 Score

AUC

OpenPose16

82.45

80.32

81.89

84.67

78.54

76.12

77.89

80.03

AlphaPose51

84.32

82.67

83.45

86.78

80.12

77.89

79.23

82.54

DeepCut52

81.23

79.34

80.67

83.45

76.45

74.12

75.89

78.34

HRNet18

86.45

84.78

85.67

88.12

82.34

79.89

81.12

84.45

SimpleBaseline53

83.12

81.56

82.67

85.23

79.45

76.78

78.34

81.45

DARKPose54

85.23

83.78

84.67

87.34

81.67

79.12

80.54

83.78

ViTPose55

87.34

85.23

86.27

88.76

82.34

80.56

81.45

84.67

TokenPose56

87.89

85.89

86.67

89.12

83.01

81.12

82.34

85.23

MixSTE57

88.45

86.78

87.23

89.67

83.45

81.78

82.89

85.89

Ours (HSTPN)

89.12

87.45

88.34

90.45

84.23

82.12

83.67

86.34