Table 10 Unified Comparative Evaluation of MedShieldFL vs. Baselines.

From: MedShieldFL-a privacy-preserving hybrid federated learning framework for intelligent healthcare systems

Method

Acc. (%)

G1

G2

G3

Train/Infer Time

Privacy & IIoT Suitability

Traditional ML (SVM, RF)21

84.7

8 s/1.2ms

Low privacy; weak IIoT fit

Centralized DL (CNN, U-Net)36

90.3

28 s/2.4ms

Moderate privacy risk; requires central storage

Centralized (Real)32

97.08

94.4

97.7

97.7

–/–

Not privacy-preserving

Centralized (Synthetic)33

99.35

100.0

98.5

98.6

–/–

Unrealistic; lacks real data variability

Centralized (Mixed)12

98.37

97.3

99.2

98.4

28 s/2.4ms

High privacy risk; high performance

FL (FedAvg)34

95.72

91.2

95.4

96.2

32 s/2.1ms

Moderate privacy; deployable on edge

FL + DCGAN7

96.85

93.6

96.7

97.3

50 s/2.8ms

Improved generalization; GAN instability risk

FL + HE26

96.12

92.5

95.8

96.1

45 s/2.6ms

Strong privacy; reasonable cost

FL + GAN6

93.6

50 s/2.8ms

GAN-augmented; good for IIoT

MedShieldFL (Ours)

98.37

97.3

99.2

98.4

54 s/2.5ms

HE + GAN; Excellent privacy, robustness, and IIoT deployment suitability