Table 1 Summary of reviewed studies.

From: Development of an automated transformer-based text analysis framework for monitoring fire door defects in buildings

Authors

Applications

Traditional method

Deep learning

Salama and El-Gohary17

Rule extractions

SVM: 70

NB: 44

ME: 82

-

Goh and Ubeynarayana18

Construction accident types

SVM: 67

LR: 35

RF: 42

KNN: 44

DT: 53

NB: 41

-

Zhang et al.19

Construction accident types

DT: 52

KNN: 53

NB: 44

SVM: 58

LR: 50

Ensemble: 52

Optimized ensemble: 68

-

Ul Hassan et al.20

Design-build contract requirements

SVM: 93.17

NB: 87.48

LR: 94.18

DT: 89.38

k-NN: 92.03

ANN: 92.80

-

Luo et al.21

Construction accident types

SVM: 73

NB: 54

LR 66

CNN: 76

Wang et al.22

Construction defects categories

DT: 92%

RF: 91%

NB: 98%

SVM: 85%

CNN-AT: 92%

Fang et al.23

Safety requirements on construction sites

-

TextCNN with BiGRU: 75.31

TextCNN: 74.82

BiGRU with Attention: 75.18

TextRCNN: 75.26

BERT: 86.91

Yang et al.24

Facility defects in residential buildings

-

CNN (FastText): 87.44

CNN (Word2Vec): 88.25

BERT: 89.62

ELECTRA: 89.47

GPT2: 89.68

CNN (FastText and Word2Vec): 90.72

Wang et al.25

Safety knowledge mapping

 

BERT-BiLSTM: 75.48

BERT-LSTM-CRF: 91.08

BERT-BiLSTM-CRF: 91.74

Tian et al.26

Safety hazard classification

 

TextCNN: 79.56

BiLSTM: 80.42

BERT-GCN- BiLSTM: 86.56

BERT-GCN: 82.34

Jianan et al.27

Knowledge types of consulting standards

 

BERT: 90.17

RoBERTa: 90.94

Longformer-RoBERT: 91.65

Longformer-RoBERT with CNN: 86.7

Longformer-RoBERT with LSTM: 83.81

28

Construction contract disputes

SVM: 62.65

NB: 50.55

LR: 62.50

DT: 57.90

k-NN: 44.85

TextCNN: 65.99

TextCNN + LSTM: 63.20

R-CNN: 57.91

Transformer: 54.80

Aim of this research

Fire door defect classification

ANN, SVM, DT, LR, 1D CNN, and LSTM

BERT, RoBERTa, ALBERT, DistilBERT, and XLNet