Table 3 Computational efficiency comparison of SPAYOLO and baseline models in terms of FLOPs, parameter count, training time per epoch, and average inference time per image.

From: Spectral-spatial feature fusion for real-time facial expression recognition

Model

Computation (GFLOPs)

Parameters (M)

Training Time per Epoch (s)

Inference Time per Image (ms)

SPAYOLO(ours)

14.4

5.7

13

2.1

ResEmoteNet

4.35

80.24

43

5.8

EmoNeXt-Tiny-22k

4.57

30.56

150

8.4