Table 6 CoLog in comparison to other log anomaly detection methods on the Nssal dataset. Bold numbers indicate the outstanding results.
Anomaly detection technique | Precision | Recall | F1-Score | Accuracy |
|---|---|---|---|---|
Supervised Methods | ||||
Logistic Regression143 | 85.133 | 74.728 | 76.476 | 97.604 |
Support Vector Machines109 | 80.206 | 74.935 | 76.474 | 97.655 |
Decision Tree110 | 94.791 | 87.700 | 89.470 | 98.063 |
Attentional BiLSTM63 | 96.750 | 98.805 | 97.754 | 99.813 |
Convolutional Neural Network46 | 96.703 | 98.243 | 97.460 | 99.789 |
pylogsentiment38 | 97.170 | 96.050 | 96.602 | 99.020 |
Unsupervised Methods | ||||
Isolation Forest144 | 65.504 | 57.352 | 56.101 | 80.967 |
Principal Component Analysis12 | 52.642 | 53.827 | 49.505 | 80.614 |
LSTM36 | 96.148 | 97.669 | 96.896 | 99.742 |
Transformer80 | 96.304 | 99.354 | 97.778 | 99.813 |
\(\hbox {CoLog}^{1}\) | \(\mathbf {99.955}\) | \(\mathbf {99.915}\) | \(\mathbf {99.935}\) | \(\mathbf {99.967}\) |