Table 7 Per-class recognition performance comparison with other models.

From: A hybrid model combining 1D-CNN and BERT for intelligent ECG arrhythmia classification

Methods

Metric

N

S

F

V

Q

CNN+Bi-LSTM30

Precision

99.60

82.80

87.50

94.57

98.54

Recall

99.01

92.70

83.33

99.10

99.75

F1-score

99.30

87.40

85.36

96.78

99.14

ECGTransform17

Precision

99.36

91.67

91.30

95.74

99.30

Recall

99.46

86.91

82.68

97.65

99.06

F1-score

99.41

89.22

86.78

96.69

99.18

MSH-GCN25

Precision

100.00

99.28

100.00

99.72

99.75

Recall

99.98

99.28

100.00

100.00

99.75

F1-score

99.88

91.76

100.00

98.38

97.14

CNN-BERT (ours)

Precision

99.56

93.41

98.79

83.95

98.87

Recall

99.75

92.28

97.01

85.01

99.42

F1-score

99.66

92.84

97.83

84.47

99.79