Table 1 Principal Component Analysis (PCA).

From: Soil erosion susceptibility assessment in the Bistrița River basin (Romania) using machine learning algorithms and GIS

 

RC1

RC2

RC3

RC4

Uniqueness

Component Loadings

precipitation

0.898

   

0.202

R_factor

0.823

   

0.283

LS_factor

0.783

   

0.174

forest_area

 

− 0.789

  

0.356

TWI

 

0.706

  

0.219

slope

 

− 0.661

  

0.191

road_density

 

0.577

 

0.534

0.412

profile_curvature

  

0.892

 

0.201

drainage_density

  

0.824

 

0.255

plan_curvature

   

0.843

0.264

lithology

    

0.588

exposure

    

0.635

 

Unrotated solution

Rotated solution

Eigenvalue

Proportion var

Cumulative

SumSq. Loadings

Proportion var

Cumulative

Component Characteristics

Component 1

4.208

0.351

0.351

2.916

0.243

0.243

Component 2

1.643

0.137

0.488

2.493

0.208

0.451

Component 3

1.299

0.108

0.596

1.709

0.142

0.593

Component 4

1.068

0.089

0.685

1.099

0.092

0.685

  1. Applied rotation method is promax.