Table 5 Final optimized hyperparameter configurations for all compared models.

From: Enhancing groundwater level prediction with a hybrid deep learning model in Jinan City, China

Hyperparameter

LSTM

GRU

STGCN

STGPM

Number of layers

2

2

2 (GCN)/1 (Temporal)

2 (GraphSAGE)/1 (GRU per branch)

Hidden dimension

128

128

64 (GCN)/128 (Temporal)

64 (Spatial)/32,64,64 (Temporal)

Temporal Window

12 (steps)

12 (steps)

12 (steps)

4, 24, 48 (steps)

Learning rate

0.001

0.001

0.001

0.001

Batch size

64

64

64

64

Optimizer

AdamW

AdamW

AdamW

AdamW

Dropout rate

0.2

0.2

0.1

0.1

Early stopping patience

15

15

15

15