Table 1 Multiplication operation in QI’s

From: A novel color images security-based on SPN over the residue classes of quaternion integers \(\:\varvec{H}{\left(\mathbb{Z}\right)}_{\varvec{\pi\:}}\)

\(\:.\)

\(\:1\)

\(\:-1\)

\(\:\varvec{i}\)

\(\:-\varvec{i}\)

\(\:\varvec{j}\)

\(\:-\varvec{j}\)

\(\:\varvec{k}\)

\(\:-\varvec{k}\)

\(\:1\)

\(\:1\)

\(\:-1\)

\(\:i\)

\(\:-i\)

\(\:j\)

\(\:-j\)

\(\:k\)

\(\:-k\)

\(\:-1\)

\(\:-1\)

\(\:1\)

\(\:-i\)

\(\:i\)

\(\:-j\)

\(\:j\)

\(\:-k\)

\(\:k\)

\(\:\varvec{i}\)

\(\:i\)

\(\:-i\)

\(\:-1\)

\(\:1\)

\(\:k\)

\(\:-k\)

\(\:-j\)

\(\:j\)

\(\:-\varvec{i}\)

\(\:-i\)

\(\:i\)

\(\:1\)

\(\:-1\)

\(\:-k\)

\(\:k\)

\(\:j\)

\(\:-j\)

\(\:\varvec{j}\)

\(\:j\)

\(\:-j\)

\(\:-k\)

\(\:k\)

\(\:-1\)

\(\:1\)

\(\:i\)

\(\:-i\)

\(\:-\varvec{j}\)

\(\:-j\)

\(\:j\)

\(\:k\)

\(\:-k\)

\(\:1\)

\(\:-1\)

\(\:-i\)

\(\:i\)

\(\:\varvec{k}\)

\(\:k\)

\(\:-k\)

\(\:j\)

\(\:-j\)

\(\:-i\)

\(\:i\)

\(\:-1\)

\(\:1\)

\(\:-\varvec{k}\)

\(\:-k\)

\(\:k\)

\(\:-j\)

\(\:j\)

\(\:i\)

\(\:-i\)

\(\:1\)

\(\:-1\)