Table 4 State of art analysis

From: Retinal vessel segmentation using multi scale feature attention with MobileNetV2 encoder

Reference number

Technique used

Dataset used

Accuracy

Jaccard/IoU

1

GLCAA

DRIVE

0.9603

0.5928

3

MPCCN

DRIVE

0.9738

0.8185

6

ANSAN-Infused Retinal Vessel Segmentation

DRIVE

0.88

0.7764

8

Morphology Cascaded Features and Supervised Learning

DRIVE

0.9747

0.6199

9

Spatial Attention U-Net (SA-UNet)

DRIVE

0.9583

0.7011

10

Genetic U-Net

DRIVE

0.9704

0.6783

11

Spider U-Net (LSTM for 3D Segmentation)

DRIVE

0.9697

0.6812

12

MRU-Net (U-Net Variant)

DRIVE

0.9837

0.7291

13

M2U-Net

DRIVE

0.963

-

14

Context Encoder Network (CE-Net)

DRIVE

0.9523

0.81

15

LUVS-Net (Lightweight U-Net)

DRIVE

0.9578

0.7955

Proposed model

MSFAUMobileNet Model

DRIVE

0.9999

0.9994