Table 3 Summarizes the key training hyperparameters and architectural settings for each model.
Model | Input size | Batch size | Learning rate | Optimizer | Weight decay | Epochs | LR scheduler | Loss function |
|---|---|---|---|---|---|---|---|---|
YOLOv5s | 640 × 640 | 16 | 0.001 | Adam | 0.0005 | 50 | CosineAnnealing | CIoU Loss |
YOLOv8m | 800 × 800 | 16 | 0.001 | Adam | 0.0005 | 50 | CosineAnnealing | CIoU Loss |
YOLOv10n | 384 × 384 | 16 | 0.001 | Adam | 0.0005 | 50 | CosineAnnealing | CIoU Loss |
Faster R-CNN | 800 × 800 | 16 | 0.001 | Adam | 0.0001 | 50 | StepLR (step = 10, γ = 0.1) | Cross-Entropy + Smooth L1 |