Table 7 Comparative study of different algorithms.

From: Deep Learning-Driven Early Diagnosis of Respiratory Diseases using CNN-RNN Fusion on Lung Sound Data

Model

Dataset

Lung Disease

Precision

Recall

F1 Score

Accuracy

Deep Learning (Proposed)

ICBHI

Healthy

0.9713

0.9827

0.9811

0.9726

Pneumonia

0.9472

0.9318

0.9335

0.9356

Asthma

0.9219

0.9548

0.9322

0.9445

COPD

0.9115

0.9022

0.9047

0.9064

Overall

0.9441

0.943

0.9426

0.9435

Coswara

Healthy

0.9152

0.9711

0.9437

0.9523

COVID-19

0.8927

0.8239

0.8541

0.8634

Overall

0.9026

0.9228

0.9117

0.9189

Support Vector Machine

ICBHI

Healthy

0.8623

0.9702

0.9132

0.9247

Pneumonia

0.8714

0.7916

0.8225

0.8269

Asthma

0.8122

0.8743

0.8416

0.8421

COPD

0.7805

0.7811

0.7813

0.7824

Overall

0.8373

0.8645

0.8571

0.8614

Random Forest

Coswara

Healthy

0.8245

0.9628

0.8813

0.8939

COVID-19

0.7733

0.6278

0.6931

0.7214

Overall

0.8022

0.879

0.8415

0.8546

  1. Significant values are in bold.