Table 6 Parameter settings for fair comparison.

From: A novel hybrid feature selection method combining binary grey wolf optimization and cuckoo search

Shared parameters (identical for all algorithms):

Parameter

Value

Applied to

Population size (M)

20

All algorithms

Maximum iterations (T)

150

All algorithms

Stopping criterion

Δfitness < 0.003 over 15 iter.

All algorithms

Random seed

100

All algorithms

KNN classifier

k = 5

All wrapper methods

Fitness weights

α = 0.99, β = 0.01

All methods

Algorithm-specific parameters:

Algorithm

Parameter

Value

BGWOCS

\(\:\lambda\:\) (Lévy flight exponent)

1.5

\(\:{p}_{0}\) (Initial mutation probability)

0.15

HRO-GWO

\(\:w\) (Inertia weight)

0.7

\(\:c\) (Cognitive coefficient)

1.4

GWOGA

\(\:pm\) (Mutation probability)

0.15

\(\:pc\) (Crossover probability)

0.85

MTBGWO

\(\:{a}_{max}\)aximum control parameter)

2.0

\(\:\theta\:\) (Threshold parameter)

0.4

IBGWO

\(\:b\) (Control parameter)

1.2

\(\:r\) (Randomization factor)

0.5