Table 2 Thermodynamic energy in the saturated State.

From: Mechanisms of curcumin adsorption in metal-substituted MOF-74 frameworks using DFT and MD simulations

Low energy

Grand potential(kcal/mol)

Total energy(kcal/mol)

Interaction energy(kcal/mol)

Non-bond energy(kcal/mol)

van der Waals energy(kcal/mol)

Elctrostatic energy(kcal/mol)

Intramolecular energy(kcal/mol)

Co-MOF

−4760.00 ± 32.70

11000.00 ± 157.95

−4760.00 ± 54.82

−4760.00 ± 46.56

−2566.67 ± 10.34

−2196.67 ± 8.85

15700.00 ± 43.25

Mg-MO

−8040.00 ± 106.61

6890.00 ± 67.62

−8040.00 ± 90.09

−8040.00 ± 18.23

−1640.00 ± 23.96

−6390.00 ± 81.93

14900.00 ± 70.93

Mn-MOF

−4990.00 ± 21.77

11000.00 ± 48.23

−4990.00 ± 29.72

−4990.00 ± 44.02

−2790.00 ± 21.25

−2200.00 ± 12.73

16000.00 ± 159.27

Ni-MOF

−4690.00 ± 17.88

10800.00 ± 62.62

−4690.00 ± 31.72

−4690.00 ± 37.19

−2450.00 ± 29.91

−2240.00 ± 10.29

15500.00 ± 134.62

Zn-MOF

−4530.00 ± 43.95

10400.00 ± 27.08

−4530.00 ± 44.84

−4530.00 ± 19.10

−2470.00 ± 7.03

−2050.00 ± 29.39

14900.00 ± 216.84

  1. Note:.
  2. All values represent mean ± standard deviation from three independent simulations (n = 3). Energy values are in kcal/mol. Low energy represents the most energetically favorable configuration. Grand potential reflects the thermodynamic stability of the drug-loaded system. Interaction energy quantifies the total MOF-drug binding strength. Non-bond energy includes both van der Waals (vdW) and electrostatic contributions, representing non-covalent interactions crucial for drug adsorption. Standard deviations range from 0.2–1.5% of mean values, indicating excellent computational reproducibility typical of molecular dynamics simulations. Mg-MOF exhibits the strongest interaction energy (− 8040 ± 18.23 kcal/mol), consistent with its highest drug loading capacity reported in Sect. “Adsorption kinetics and metal node effects”.
  3. 1. E + 03 indicates multiplication by 10 to the power of 3.
  4. 2. E + 04 indicates multiplication by 10 to the power of 4.