Table 5 Previous modeling techniques used for LWHSC.

From: Modeling the mechanical properties of lightweight high-strength concrete incorporating supplementary cementitious materials using multi-expression programming and random forest

S. No

Technique

Property

Best R2 value

References

1

Gradient Boosting Regression (GBR)

CS of LWHSC

0.95

156

2

GPR, Ensemble Learning (EL), Support Vector Machine Regression (SVMR), and optimized GPR, SVMR, and EL

CS of LWC

(Optimized GPR, 0.9803)

(SVMR, 0.9777)

(GPR, 0.9740)

157

3

Multilayer Perceptron (MLP), Support Vector Machine (SVM), and Decision Tree (DT)

CS of lightweight pumice concrete

0.914

158

4

Gradient-Boosted Trees (GBT), RF, Tree Ensemble (TE), Extreme Gradient Boosting (XGB), Keras Neural Network (KNN), Simple Regression (SR), Probabilistic Neural Network (PNN), Multilayer Perceptron (MLP), and Linear Regression (LR)

CS of LWC

0.90

159

5

Support Vector Machine (SVM), Artificial Neural Network (ANN), DT, GPR, and XGBoost.

lightweight aggregate concrete (LWAC)

0.99

160

6

RF and GEP

CS of HSC

0.96

50

7

ANN

CS

0.83

161

8

XG boost, Catboat, Extra trees regressor, Bagging regressor

CS, STS, FS

0.98

162

9

ANN

CS, STS, FS, E

0.99

163

10

ELM

CS, STS, FS

0.96

164

11

REG, CART, CHAID, ANN, SVM

Slump, CS

0.85

165

12

SVM, GRP

CS

0.99

166

13

LR, XGBOOST

CS, STS

0.99

167

14

MEP and RF

CS, TS, FS

0.99

Present work