Table 5 Performance of DL classifiers with feature selection (results in% acc).

From: Clickbait detection in news headlines using RoBERTa-Large language model and deep embeddings

Model

Embeddings

Accuracy

(%)

Precision

Recall

F1-Score

LSTM

Word2Vec

85

87

85

85

FastText

77

79

78

78

Sentence Embeddings

94

95

96

94

Bi-LSTM

Word2Vec

87

88

87

87

FastText

79

80

80

80

Sentence Embeddings

95

96

96

96

 

Word2Vec

89

89

89

89

GRU

FastText

78

79

79

78

 

Sentence Embeddings

94

94

95

96

 

Word2Vec

89

89

89

89

Bi-GRU

FastText

84

84

84

83

 

Sentence Embeddings

95

97

97

96

BERT

Pre-Trained Embeddings

95

95

96

95

T5

87

88

89

88

DistilBERT

91

92

91

92

RoBERTa-Large

97

98

97

98

  1. Significant values are in bold.