Table 8 Comparison with baseline models.

From: Clickbait detection in news headlines using RoBERTa-Large language model and deep embeddings

Model

Type

Parameters

Accuracy (%)

F1-score (%)

Training time (per epoch)

Inference speed

Resource demand

SVM

ML (Linear)

–

92

92

~ 15s

Fast

Low (CPU)

LSTM

RNN-based DL

10 M

95

96

~ 60s

Medium

Moderate (GPU/CPU)

BiLSTM

RNN-based DL

18 M

95

96

~ 75s

Medium

Moderate

T5

Seq2Seq Transformer

60 M

87

88

~ 85s

Slower

High (GPU/RAM)

DistilBERT

Transformer (distilled)

66 M

91

92

~ 40s

Fast

Moderate (GPU)

RoBERTa-Large

Transformer (large)

355 M

97

98

~ 120s

Slower

Very High (GPU ~ 12GB)