Table 2 Comparison of classification performance across methods.

From: VENturing into machine learning for the morphological analysis of von Economo neurons

Method

Accuracy

Precision

Recall

F1-Score

ROC-AUC

Notes

Machine learning methods

 BART

94.2 ± 2.1

0.91

0.96

0.94

0.97

Bootstrap mean ± SD

 C5.0

93.8 ± 2.3

0.90

0.95

0.92

0.96

Bootstrap mean ± SD

 Random forest

95.1 ± 1.8

0.93

0.97

0.95

0.98

Bootstrap mean ± SD

 XGBoost

94.7 ± 2.0

0.92

0.96

0.94

0.97

Bootstrap mean ± SD

 SVM

92.9 ± 2.5

0.89

0.94

0.91

0.95

Bootstrap mean ± SD

 EARTH

93.5 ± 2.2

0.90

0.95

0.93

0.96

Bootstrap mean ± SD

CNN methods

 Original representation

93.64

0.89

1.00

0.94

0.95

Single test performance

 Diameter-enhanced

98.18

0.96

1.00

0.98

0.98

Single test performance

Soma-focused

94.55

0.92

0.98

0.95

0.96

Single test performance

Human expert performance

 Expert classification

78.3 ± 12.4

0.72

0.81

0.76

0.79

Inter-rater κ = 0.0132

  1. Bootstrap results based on 5000 iterations with 50 cells per group. Human expert performance estimated from inter-rater reliability analysis.