Table 15 Evaluation metrics for the proposed ensemble per each class of ISIC 2019 dataset.
From: Multimodal deep learning ensemble framework for skin cancer detection
Class | TP | FP | FN | TN | Precision | Recall | F1 Score | Specificity | AUC |
|---|---|---|---|---|---|---|---|---|---|
MEL | 403 | 122 | 26 | 2545 | 0.768 | 0.944 | 0.847 | 0.942 | 0.953 |
NV | 1165 | 11 | 129 | 1791 | 0.991 | 0.900 | 0.943 | 0.991 | 0.974 |
BCC | 319 | 18 | 32 | 2727 | 0.947 | 0.909 | 0.927 | 0.992 | 0.936 |
AK | 87 | 14 | 14 | 2981 | 0.861 | 0.861 | 0.861 | 0.994 | 0.923 |
BKL | 234 | 12 | 24 | 2826 | 0.951 | 0.907 | 0.929 | 0.995 | 0.954 |
DF | 21 | 3 | 0 | 3072 | 0.429 | 1.000 | 0.600 | 0.989 | 0.951 |
VASC | 27 | 14 | 9 | 3046 | 0.659 | 0.964 | 0.783 | 0.994 | 0.984 |
SCC | 52 | 7 | 2 | 3035 | 0.881 | 0.963 | 0.920 | 0.997 | 0.969 |