Table 17 Comparative analysis against relevant studies on ISIC 2018 and ISIC 2019 datasets.

From: Multimodal deep learning ensemble framework for skin cancer detection

Study

Dataset

Pre-processing

Use metadata

Classifier and training algorithm

Parameters

Accuracy (%)

Proposed model

30

ISIC 2018

Data augmentation, colour constancy (Shades of Gray), metadata encoding

Yes

EfficientNet-B3 & B4 with metadata fusion, TTA

SGD, OneCycle LR, weighted cross-entropy loss

89.5%

93.2%

31

Image: Data augmentation Metadata: Handling missing values, normalization of numerical attributes (age), balancing metadata distribution

Yes

Hybrid CNN-ViT with Focal Loss (FL)

Adam optimizer, learning rate = 0.001, batch size = 32, focal loss for class imbalance

89.48%

26

Contrast enhancement

No

DarkNet-53 and DenseNet-201 using transfer learning

-Epochs = 100-Learning rate = 0.0002,-Momentum = 0.6557-Batch size = 128

85.4%

37

Data augmentation and resize

No

Inception ResNet v2 and EfcientNet-B4 ensemble

Adam optimizer with lr = 0.01, Epsilon = 0.1

88.21%

38

Resize, data augmentation and normalization

No

ConvNext-Tiny, EfficientNetB0, SENet, DenseNet, ResNet50 ensemble

Adam optimizer with lr = 0.001-Epochs = 100-Batch size = 32

90.15%

39

Image resizing

No

The DXDSENet-CM ensemble model combines Xception, DenseNet201, and a Depthwise Squeeze-and-Excitation ConvMixer for enhanced skin lesion classification

Adam optimizer with learning rate schedule ReduceLROnPlateau (factor 0.3, min_lr 1e-6),Batch size: 128 Epochs: 100 Input size: 224 × 224 Activation:GELU ReLU, Softmax

88.21%

28

Image resizing -Normalization

No

Federated MobileNetV2

4 clients total (2 trained on ISIC 2018); 7 classes

80%

29

ISIC 2019

Image: Data augmentation resizingMetadata: Standardization Missing metadata (mean imputation for numerical values and mode imputation for categorical values)

Yes

Ensemble of EfficientNet models (EfficientNetB0, EfficientNet-B1, EfficientNet-B2) for image path, metadata processed through separate path and fused with image features for final classification

Adam optimizer with lr = 0.001, batch size = 32

74.2% (balanced accuracy)

91.1%

30

Data augmentation, colour constancy (Shades of Gray), metadata encoding

Yes

EfficientNet-B3 & B4 with metadata fusion, TTA

SGD, OneCycle LR, weighted cross-entropy loss

66.2%

35

Black borders removal andreal time data augmentation

No

Ensemble of EfficientNet-B5, SE-ResNeXt-101(32 × 4d),EfficientNet-B4 andInception-ResNet-v2

-Number of epochs over 32- Weighted Cross-Entropy Loss

63.4%

36

Normalization, data augmentation and cropping

No

Ensemble of DenseNet-V2,Inception-V3,InceptionResNetV2 andXception

-Adam optimizer with learning rate (initial) = 1e-3Learning rate = 1e-4-Epochs = 50 (starting from the 4th epoch-Batch size = 64

82.1%

32

Image: -Metadata: Clinical data (age, sex, medical history) integrated

Yes

DenseNet-169 with MetaNet and MetaBlock modules

Adam optimizer, learning rate = 0.001, batch size = 32

81.4% balanced accuracy

40

-Image resizing (100 × 100),-Non-Local Means denoising,-Data augmentation

No

Custom CNN with Sparse Dictionary Learning

Adam optimizer, batch size = 32, epochs = 100, filters (128, 256, 512, 512, 256), kernel sizes (11 × 11 → 1 × 1), ReLU and Softmax activations

81.23%

27

-image resizing (299 × 299)-Data augmentation -Class balancing through oversampling

No

Inception-V3

Adam optimizer, learning rate = 0.01, dropout = 0.25, batch size = 20, epochs = 50, fivefold cross-validation

88.63%

28

Image resizing -Normalization

No

Federated MobileNetV2

4 clients total (2 trained on ISIC 2019); 8 classes

87%

  1. Significant values are in [bold].