Table 1 Simulation Scenarios for Evaluating Estimator Performance.

From: Multicomponent stress-strength reliability analysis using the inverted exponentiated rayleigh distribution under block adaptive type-II progressive hybrid censoring and k-records

Scenario

Parameters \((\theta _1, \theta _2, \lambda )\)

True \(\zeta _{3,5}\)

Stress (n, k)

Strength \((g, n_i, s_i, R_{i,j})\)

Effect of Sample Size (n) with g=2

1

(1.8, 2.2, 1.2)

0.577

\((5,\, 3)\)

\(g=2, n_i=30, s_i=24, R_{i,j}=(0^{*23})\)

2

(1.8, 2.2, 1.2)

0.577

(10, 3)

\(g=2, n_i=50, s_i=40, R_{i,j}=(0^{*39})\)

3

(1.8, 2.2, 1.2)

0.577

(15, 3)

\(g=2, n_i=60, s_i=48, R_{i,j}=(0^{*47})\)

Effect of Block Number (g) with fixed total units

4

(2.5, 1.5, 1.0)

0.284

(10, 3)

\(g=2, n_i=50, s_i=40, R_{i,j}=(0^{*39})\)

5

(2.5, 1.5, 1.0)

0.284

(10, 3)

\(g=4, n_i=25, s_i=20, R_{i,j}=(0^{*19})\)

6

(2.5, 1.5, 1.0)

0.284

(10, 3)

\(g=6, n_i\approx 17, s_i=14, R_{i,j}=(0^{*13})\)

Effect of Record Parameter (k) with g=4

7

(3.0, 3.5, 0.8)

0.536

(10, 1)

\(g=4, n_i=25, s_i=20, R_{i,j}=(0^{*19})\)

8

(3.0, 3.5, 0.8)

0.536

(10, 3)

\(g=4, n_i=25, s_i=20, R_{i,j}=(0^{*19})\)

9

(3.0, 3.5, 0.8)

0.536

(10, 5)

\(g=4, n_i=25, s_i=20, R_{i,j}=(0^{*19})\)

Effect of Different Parameters with g=4

10

(1.8, 2.2, 1.2)

0.577

(10, 3)

\(g=4, n_i=25, s_i=20, R_{i,j}=(0^{*19})\)

11

(2.5, 1.5, 1.0)

0.284

(10, 3)

\(g=4, n_i=25, s_i=20, R_{i,j}=(0^{*19})\)

12

(3.0, 3.5, 0.8)

0.536

(10, 3)

\(g=4, n_i=25, s_i=20, R_{i,j}=(0^{*19})\)

  1. For each scenario, the number of multicomponent systems tested for strength is set to be equal to the number of k-records collected for stress, both denoted by n