Table 7 Validation results for three models from the DS and DNS pipelines on the CBIS-DDSM dataset, using input images of size 256 \(\times\) 256 with P1–P99 pixel intensity normalization, while varying resizing strategies (rectangular vs. square shapes, with or without padding).
From: The impact of pre-processing techniques on deep learning breast image segmentation
Model name | Padding | Keep aspect ratio | DSC ± STD | HD ± STD (in mm) | Comparison | p-value | ||
|---|---|---|---|---|---|---|---|---|
A | DS 256 P1-P99 | Yes | Yes | 0.657 ± 0.269 | 27 ± 14 | A | B | 0.004 |
B | DNS 256 P1-P99 | No | No | 0.610 ± 0.229 | 40 ± 21 | A | C | 0.000 |
C | DNS 256 448 P1-P99 | No | Yes | 0.466 ± 0.205 | 85 ± 19 | B | C | 0.000 |
Terminology | Pipeline | Orientation | Pixel spacing | Pixel intensity | Resize |
|---|---|---|---|---|---|
DS 256 P1-P99 | DS | Yes | Yes | P1-P99 | 256 × 256 |
DNS 256 P1-P99 | DNS | Yes | Yes | P1-P99 | 256 × 256 |
DNS 256 448 P1-P99 | DNS | Yes | Yes | P1-P99 | 256 × 448 |