Table 5 Consolidated performance metrics across all model architectures.
Model | Accuracy | Kappa | F1 Macro | Weighted | ||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Mean | Std | Balanced Mean | Balanced Std | Kappa Mean | Kappa Std | Mean | Std | Precision mean | Precision Std | Recall Mean | Recall Std | F1 Mean | F1 Std | |
Ensemble | 0.901 | 0.043 | 0.846 | 0.074 | 0.782 | 0.089 | 0.847 | 0.068 | 0.876 | 0.052 | 0.828 | 0.094 | 0.832 | 0.087 |
Encoder | 0.880 | 0.050 | 0.786 | 0.098 | 0.724 | 0.113 | 0.786 | 0.115 | 0.874 | 0.069 | 0.880 | 0.050 | 0.873 | 0.056 |
Inception | 0.867 | 0.050 | 0.820 | 0.064 | 0.719 | 0.086 | 0.799 | 0.063 | 0.887 | 0.044 | 0.862 | 0.052 | 0.865 | 0.051 |
Snapshot | 0.841 | 0.066 | 0.826 | 0.055 | 0.688 | 0.099 | 0.789 | 0.049 | 0.903 | 0.041 | 0.876 | 0.057 | 0.881 | 0.053 |
Transformer | 0.870 | 0.057 | 0.815 | 0.080 | 0.722 | 0.105 | 0.801 | 0.081 | 0.889 | 0.031 | 0.867 | 0.050 | 0.871 | 0.044 |
Fcn | 0.828 | 0.094 | 0.779 | 0.098 | 0.651 | 0.141 | 0.751 | 0.102 | 0.889 | 0.037 | 0.870 | 0.057 | 0.873 | 0.051 |
Timecnn | 0.862 | 0.052 | 0.806 | 0.093 | 0.705 | 0.103 | 0.792 | 0.084 | 0.918 | 0.033 | 0.901 | 0.043 | 0.902 | 0.039 |
Mcnn | 0.876 | 0.057 | 0.840 | 0.078 | 0.741 | 0.111 | 0.822 | 0.081 | 0.901 | 0.024 | 0.842 | 0.067 | 0.851 | 0.053 |