Table 4 Federated learning configuration.

From: A hybrid federated learning framework with generative AI for privacy-preserving and sustainable security in IOT-enabled smart environments

Parameter

Value

Number of clients

10

Local epochs

5

Batch size

32 (edge)

Learning rate

0.001– 0.005

Optimizer

Adam (β1 = 0.9, β2 = 0.999)

DP noise multiplier

σ = 1.1

Aggregation method

FedAvg

Differential privacy

Gaussian mechanism (ε = 2.5 for proposed)

Diffusion steps

20

Generative AI Component

Client level data augmentation through variational autoencoder (VAE).