Table 2 Prediction results of topcoat thickness measurement (\(\:{T}_{topcoat}\)) and refractive index (\(\:n\)) for real-world TBC samples.

From: Simulation-assisted multimodal deep learning (Sim-MDL) fusion models for the evaluation of thermal barrier coatings using infrared thermography and Terahertz imaging

Training data

Model

Sample

Thickness, \(\:{\varvec{T}}_{\varvec{t}\varvec{o}\varvec{p}\varvec{c}\varvec{o}\varvec{a}\varvec{t}}\) (µm)

Refractive index, \(\:\varvec{n}\)

Mean

SD

MAPE

Mean

SD

MAPE

Simulation

1D-CNN

1

30.03

5.01

25.13

4.72

0.15

3.06

2

40.43

4.97

26.35

4.64

0.11

3.31

3

70.09

3.19

7.84

4.78

0.13

2.59

4

126.56

2.34

5.47

4.82

0.05

1.00

LSTM

+

Attention

1

27.96

3.01

16.5

4.84

0.03

1.12

2

37.11

2.97

15.96

4.87

0.02

1.47

3

68.24

2.19

4.98

4.79

0.05

0.90

4

124.06

1.86

3.38

4.72

0.06

1.67

Simulation

+

Experiment

1D-CNN

1

29.06

3.99

21.08

4.69

0.16

3.28

2

39.49

3.78

23.40

4.62

0.10

3.67

3

68.05

2.09

4.69

4.63

0.10

3.49

4

122.98

1.45

2.48

4.83

0.09

1.78

LSTM

+

Attention

1

26.76

2.67

11.53

4.8

0.01

0.27

2

35.89

2.56

12.16

4.82

0.03

0.70

3

67.93

2.02

4.50

4.78

0.02

0.51

4

122.04

1.07

1.75

4.77

0.05

1.05