Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Advertisement

Scientific Reports
  • View all journals
  • Search
  • My Account Login
  • Content Explore content
  • About the journal
  • Publish with us
  • Sign up for alerts
  • RSS feed
  1. nature
  2. scientific reports
  3. articles
  4. article
Nonparametric quantile regression captures regional variability and scaling deviations in Atlantic surfclam length–weight relationships
Download PDF
Download PDF
  • Article
  • Open access
  • Published: 14 December 2025

Nonparametric quantile regression captures regional variability and scaling deviations in Atlantic surfclam length–weight relationships

  • Gorka Bidegain1,2,
  • Marta Sestelo3,4,
  • Patricia L. Luque5,
  • Eric N. Powell6,
  • Arantza Irirarte2,7,
  • Ibon Uriarte2,8 &
  • …
  • Daphne Munroe9 

Scientific Reports , Article number:  (2025) Cite this article

  • 1651 Accesses

  • 15 Altmetric

  • Metrics details

We are providing an unedited version of this manuscript to give early access to its findings. Before final publication, the manuscript will undergo further editing. Please note there may be errors present which affect the content, and all legal disclaimers apply.

Subjects

  • Ecology
  • Ocean sciences

Abstract

The universality of the allometric model for describing the length–weight relationship in marine species has been questioned, particularly for some invertebrates such as sea urchins, clams, and barnacles. In such cases, nonparametric regression models may offer improved flexibility and capture specific patterns-such as inflection points in growth curves-not identified by standard parametric models. These features can support the identification of biologically meaningful thresholds relevant to fisheries, including size-dependent yield. Nonparametric quantile regression further enhances inference by characterizing variability across the entire distribution of body condition. Here, we assess the comparative performance of parametric and nonparametric regression models for the Atlantic surfclam, Spisula solidissima, using data collected from three regions along the U.S. Atlantic coast (Virginia, Delaware/Maryland, and New Jersey). First, we compare two mean regression approaches —a classic allometric model and a kernel-based nonparametric alternative— using a bootstrap-based procedure. Second, we apply quantile regression to both parametric and nonparametric frameworks to investigate size-dependent variation in growth patterns. Model selection for mean regressions was based on a hypothesis test contrasting the allometric model versus a general nonparametric alternative, while the quantile regressions were evaluated using a goodness-of-fit test derived from the cumulative sum of the gradient vector. Our results indicate that the allometric model provides a better fit in the mean regression context, while the nonparametric model proves more effective for quantile regression, particularly in detecting condition-dependent deviations and regional variability. Other long-lived marine bivalves, such as Arctica islandica and Mercenaria mercenaria, which show environmentally driven variation in growth and condition, may similarly benefit from modeling approaches that distinguish central from marginal populations.

Similar content being viewed by others

Reburial potential and survivability of the striped venus clam (Chamelea gallina) in hydraulic dredge fisheries

Article Open access 27 April 2021

Development of a method for estimating asari clam distribution by combining three-dimensional acoustic coring system and deep neural network

Article Open access 02 November 2024

Trophic group responses to marine reserve protection in temperate and tropical reefs: a systematic review and meta-analysis

Article Open access 19 January 2026

Data availability

The datasets used and/or analysed during the current study available from the corresponding author on reasonable request. The code used to estimate the models and perform the goodness-of-fit testing procedure is publicly available on GitHub at: https://github.com/sestelo/surfclam_length_weight_code.

References

  1. Ropes, J. W. Biological and fisheries data on the Atlantic surf clam, Spisula solidissima (Dillwyn) (NMFS/NEFSC Northeast Fisheries Science Center Technical Report Series No. 24. 88 pp. U.S. Department of Commerce, Northeast Fisheries Science Center, Woods Hole, Massachusetts, 1980).

  2. NEFSC. 37th northeast regional stock assessment workshop (37th saw): Stock assessment review committee (sarc) consensus summary of assessments. C. Atlantic Surfclam. Northeast Fisheries Science Center Reference Document 03e16, pp. 284e433. U.S. Department of Commerce, Northeast Fisheries Science Center, Woods Hole, Massachusetts. (2003).

  3. Merrill, A. & Ropes, J. The general distribution of the surf clam and ocean quahog. In Proceedings of the National Shellfisheries Association, vol. 59, 0–5 (1969).

  4. Weinberg, J. Density-dependent growth in the atlantic surfclam, Spisula solidissima, off the coast of the delmarva peninsula, usa. Mar. Biol. 130, 621–630 (1998).

    Google Scholar 

  5. Weinberg, J. R. Bathymetric shift in the distribution of Atlantic surfclams: response to warmer ocean temperature. ICES J. Mar. Sci. J. du Conseil 62, 1444–1453 (2005).

    Google Scholar 

  6. NEFSC. 61th Northeast Regional Stock ssessment Workshop (61st SAW). Assessment Report. In Proceedings of the 61st Northeast Regional Stock Assessment Workshop, Northeast Fisheries Science Center, 464 p. (2017).

  7. NEFSC. Management track assessments completed in Spring 2020. Northeast Fisheries Science Center Reference Document 86p. (2022).

  8. Munroe, D., Powell, E., Mann, R., Klinck, J. & Hofmann, E. Underestimation of primary productivity on continental shelves: evidence from maximum size of extant surfclam (Spisula solidissima) populations. Fish. Oceanogr. 22, 220–233 (2013).

    Google Scholar 

  9. Munroe, D. et al. Fishing and bottom water temperature as drivers of change in maximum shell length in atlantic surfclams (Spisula solidissima). Estuar. Coast. Shelf Sci. 170, 112–122 (2016).

    Google Scholar 

  10. Narváez, D. A. et al. Long-term dynamics in atlantic surfclam (Spisula solidissima) populations: the role of bottom water temperature. J. Mar. Syst. 141, 136–148 (2015).

    Google Scholar 

  11. Díaz, M. G. et al. Spatial and temporal variability of atlantic surfclam (Spisula solidissima, dillwyn 1817) population demographics along the middle Atlantic Bight. J. Shellfish Res. 43, 37–49 (2024).

    Google Scholar 

  12. Kim, Y. & Powell, E. N. Surfclam histopathology survey along the delmarva mortality line. J. Shellfish Res. 23, 429–442 (2004).

    Google Scholar 

  13. Marzec, R. J., Kim, Y. & Powell, E. N. Geographical trends in weight and condition index of surfclams (Spisula Solidissima) in the mid-atlantic bight. J. Shellfish Res. https://doi.org/10.2983/035.029.0104 (2010).

    Google Scholar 

  14. Hofmann, E. E. et al. An overview of factors affecting distribution of the atlantic surfclam (Spisula solidissima), a continental shelf biomass dominant, during a period of climate change. J. Shellfish Res. 37, 821–831 (2018).

    Google Scholar 

  15. Stromp, S. L., Powell, E. N. & Mann, R. Evaluation of the degree of co-occurrence of atlantic surfclams (Spisula solidissima) and ocean quahogs (Arctica islandica) in the expanding Northwestern Atlantic boreal/temperate ecotone: implications for their fisheries. J. Shellfish Res. 42, 61–75 (2023).

    Google Scholar 

  16. Munroe, D. M. et al. The atlantic surfclam fishery and offshore wind energy development: 1. model development and verification. ICES J. Mar. Sci. 79, 1787–1800 (2022).

  17. Spencer, M. M. et al. What is the future of the atlantic surfclam (Spisula solidissima) fishery under climate-induced warming on the mid-Atlantic Bight continental shelf: A multidecadal assessment. Fish. Oceanogr. e12708 (2024).

  18. Cargnelli, L., Griesbach, S., Packer, D. & Weissberger, E. Essential fish habitat source document: Atlantic surfclam, Spisula solidissima, life history and habitat characteristics. NOAA Tech Memo NMFS NE 142, 13 (1999).

    Google Scholar 

  19. Parsons, P. Evolutionary rates: stress and species boundaries. Annu. Rev. Ecol. Syst. 22, 1–18 (1991).

    Google Scholar 

  20. Žliobaitė, I. & Fortelius, M. All sizes fit the red queen. Paleobiology 46, 478–494 (2020).

    Google Scholar 

  21. Cone, R. S. The need to reconsider the use of condition indices in fishery science. Trans. Am. Fish. Soc. 118, 510–514 (1989).

    Google Scholar 

  22. Jones, R., Petrell, R. & Pauly, D. Using modified length-weight relationships to assess the condition of fish. Aquac. Eng. 20, 261–276 (1999).

    Google Scholar 

  23. Powell, E. N. et al. Growth and longevity in surfclams east of nantucket: range expansion in response to the post-2000 warming of the North Atlantic. Cont. Shelf Res. 195, 104059 (2020).

    Google Scholar 

  24. Prior, D. J., Schneiderman, A. M. & Greene, S. I. Size-dependent variation in the evasive behaviour of the bivalve mollusc Spisula solidissima. J. Exp. Biol. 78, 59–75 (1979).

    Google Scholar 

  25. MacKenzie, C. L., Radosh, D. J. & Reid, R. N. Densities, growth, and mortalities of juveniles of the surf clam (Spisula solidissima)(Dillwyn) in the new york bight. J. Shellfish Res. 5, 81–84 (1985).

    Google Scholar 

  26. Walker, R. L. & Heffernan, P. B. Intertidal growth and survival of northern quahogs mercenaria mercenaria (Linnaeus 1758) and Atlantic surf clams Spisula solidissima (Dillwyn 1817) in georgia. J. World Aquac. Soc. 21, 307–313 (1990).

    Google Scholar 

  27. Dietl, G. P. & Alexander, R. R. Predator-prey interactions between the naticids Euspira heros and Neverita duplicata and the Atlantic surfclam Spisula solidissima from Long Island to delaware. J. Shellfish Res. 16, 413–422 (1997).

    Google Scholar 

  28. Hofmann, E. E. et al. A population dynamics model of the hard clam, Mercenaria mercenaria: development of the age-and length-frequency structure of the population. J. Shellfish Res. 25, 417–444 (2006).

    Google Scholar 

  29. Le Goff, C. et al. A coupled biophysical model for the distribution of the great scallop pecten maximus in the English Channel. J. Mar. Syst. 167, 55–67 (2017).

    Google Scholar 

  30. Lavaud, R., Rannou, E., Flye-Sainte-Marie, J. & Jean, F. Reconstructing physiological history from growth, a method to invert deb models. J. Sea Res. 143, 183–192 (2019).

    Google Scholar 

  31. LaBarbera, M. Analyzing body size as a factor in ecology and evolution. Annu. Rev. Ecol. Syst. 20, 97–117 (1989).

    Google Scholar 

  32. Harris, L. A., Duarte, C. M. & Nixon, S. W. Allometric laws and prediction in estuarine and coastal ecology. Estuaries Coasts 29, 340–344 (2006).

    Google Scholar 

  33. Powell, E. N., Mann, R., Ashton-Alcox, K. A., Kim, Y. & Bushek, D. The allometry of oysters: spatial and temporal variation in the length–biomass relationships for Crassostrea virginica. J. Mar. Biol. Assoc. U. K. 96, 1127–1144. https://doi.org/10.1017/S0025315415000703 (2016).

    Google Scholar 

  34. Bidegain, G., Sestelo, M., Roca-Pardiñas, J. & Juanes, J. A. Estimating a new suitable catch size for two clam species: Implications for shellfishery management. Ocean Coast. Manag. 71, 52–63 (2013).

    Google Scholar 

  35. Sestelo, M. & Roca-Pardinas, J. A new approach to estimation of the length–weight relationship of Pollicipes pollicipes (Gmelin, 1789) on the atlantic coast of Galicia (Northwest Spain): Some aspects of its biology and management. J. Shellfish Res. 30, 939–948 (2011).

    Google Scholar 

  36. Bidegain, G. et al. Assessing the suitability of the minimum capture size and protection regimes in the gooseneck barnacle shellfishery. Ocean Coast. Manag. 104, 150–158 (2015).

    Google Scholar 

  37. Martínez-Silva, I., Sestelo, M., Bidegain, G., Lorenzo-Arribas, A. & Roca-Pardiñas, J. Nonparametric regression applied to sea urchin gorwth Sea urchins. In Edgar Raymond Banks (Ed.) Nonparametric regression applied to sea urchin growth (ISBN: 878-1-63321-550-4, Hauppauge, New York, 2014).

  38. Koenker, R. & Hallock, K. F. Quantile regression. Journal of economic perspectives 15, 143–156 (2001).

    Google Scholar 

  39. NEFSC. 44th northeast regional stock assessment workshop (44th saw) assessment report. Northeast Fisheries Science Center Reference Documents 1–666 (2007).

  40. Jacobson, L. D. & Hennen, D. R. Improving the NEFSC clam survey for Atlantic surfclams and ocean quahogs. US Dept Commer, Northeast Fish Sci Cent Ref Doc. 19–06, 1–89 (2019).

    Google Scholar 

  41. DeGrasse, S. et al. Onboard screening dockside testing as a new means of managing paralytic shellfish poisoning risks in federally closed waters. Deep Sea Research Part II: Topical Studies in Oceanography 103, 288–300 (2014).

    Google Scholar 

  42. Powell, E. N. et al. Temperature, maximum size, and the Atlantic surfclam Spisula solidissima: The sensitivity of demographics to climate warming, the perfidy of food, and a vignette on size-limited management in bivalve fisheries. Canadian Journal of Fisheries and Aquatic Sciences in press (2025).

  43. Weinberg, J. R., Dahlgren, T. G. & Halanych, K. M. Influence of rising sea temperature on commercial bivalve species of the U.S. atlantic coast. In American Fisheries Society Symposium 32, 131–140 (2002).

  44. Weinberg, J. R., Powell, E. N., Pickett, C., Nordahl, V. A. J. & Jacobson, L. D. Results from the 2004 cooperative survey of atlantic surfclams. Ref. Doc. 05-01, Northeast Fisheries Science Center (2005).

  45. Huxley, J. S. Constant differential growth-ratios and their significance. Nature 114, 895–896 (1924).

    Google Scholar 

  46. Wand, M. P. & Jones, M. C. Kernel Smoothing (Chapman & Hall, London, 1995).

    Google Scholar 

  47. Fan, J. & Gijbels, I. Local polynomial modelling and its applications. No. 66 in Monographs on statistics and applied probability series (Chapman & Hall, 1996).

  48. Hayes, D. B., Brodziak, J. K. & O’Gorman, J. B. Efficiency and bias of estimators and sampling designs for determining length-weight relationships of fish. Can. J. Fish. Aquat. Sci. 52, 84–92 (1995).

    Google Scholar 

  49. Sestelo, M. & Roca-Pardiñas, J. A new approach to estimation of length-weight relationship of Pollicipes pollicipes (Gmelin, 1789) on the Atlantic coast of Galicia (Northwest Spain): some aspects of its biology and management. J. Shellfish Res. 30, 939–948 (2011).

    Google Scholar 

  50. R Core Team. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria (2017).

  51. Sestelo, M., Villanueva, N. M. & Roca-Pardiñas, J. npregfast: Nonparametric Estimation of Regression Models with Factor-by-Curve Interactions. R package version 1.5.0 (2017).

  52. Sestelo, M., Villanueva, N., Meira-Machado, L. & Roca-Pardiñas, J. npregfast: An r package for nonparametric estimation and inference in life sciences. Journal of Statistical Software 82, 1–27, https://doi.org/10.18637/jss.v082.i12 (2017).

  53. Koenker, R. & Gilbert Bassett, J. Regression quantiles. Econometrica 46, 33–50 (1978).

    Google Scholar 

  54. Koenker, R. quantreg: Quantile Regression (2017). R package version 5.33.

  55. Martínez-Silva, I., Roca-Pardiñas, J. & Ordóñez, C. Forecasting so2 pollution incidents by means of quantile curves based on additive models. Environmetrics 27, 147–157, https://doi.org/10.1002/env.2384 (2016). Env.2384.

  56. He, X. & Zhu, L.-X. A lack-of-fit test for quantile regression. J. Am. Stat. Assoc. 98, 1013–1022. https://doi.org/10.1198/016214503000000963 (2003).

    Google Scholar 

  57. Powell, E. & Stanton, R. Jr. Estimating biomass and energy flow of molluscs in paleo-communities. Palaeontology (Lond.) 28, 1–34 (1985).

    Google Scholar 

  58. Wisner, B., Wang, Z., Sheehan, A., Guo, X. & Munroe, D. Genetics, age demographics, and shell size of Atlantic surfclams from the southern edge of their range. Estuaries Coasts 47, 485–493 (2024).

    Google Scholar 

  59. Rowell, T. W. & Chaisson, D. R. A review of the biology and fisheries for ocean quahog (Arctica islandica) in eastern Canada. J. Shellfish Res. 9, 445–454 (1990).

    Google Scholar 

  60. Kraeuter, J. N. & Castagna, M. Biology of the hard clam. Elsevier (2005). Chapters on condition index and geographic variability in growth.

  61. LaFrance, M., Archambault, P. & Roff, J. C. Spatial and temporal variability in length-weight relationships of benthic macroinvertebrates in the Gulf of St. Lawrence,Canada. Marine Ecology Progress Series 254, 199–211, https://doi.org/10.3354/meps254199 (2003).

  62. Robertis, A. D. & Williams, K. Weight-length relationships in fisheries studies: The standard allometric model should be applied with caution. Trans. Am. Fish. Soc. https://doi.org/10.1577/t07-124.1 (2008).

    Google Scholar 

  63. Rabaoui, L., Tlig Zouari, S., Katsanevakis, S. & Ben Hassine, O. K. Comparison of absolute and relative growth patterns among five Pinna nobilis populations along the tunisian coastline: an information theory approach. Mar. Biol. 152, 537–548 (2007).

    Google Scholar 

  64. Ropes, J. W. Reproductive cycle of the surf clam, Spisula solidissima, in offshore new jersey. Biol. Bull. 135, 349–365 (1968).

    Google Scholar 

  65. Tarnowski, M. Temporal distribution of surf clam larvae off southern New Jersey. J. Shellfish Res 2, 108 (1982).

    Google Scholar 

  66. Ropes, J. Shell length at sexual maturity of surf clams, Spisula solidissima, from an inshore habitat. In Proc. Nat. Shellfish. Assoc 69, 85–91 (1979).

    Google Scholar 

  67. Jones, D. S. Annual growth increments in shells of Spisula solidissima record marine temperature variability. Science 211, 165–167 (1981).

    Google Scholar 

  68. Kanti, A., Heffernan, P. & Walker, R. Gametogenic cycle of the southern surfclam, Spisula solidissima similis (Say, 1822), from St. Catherines Sound, Georgia. J. Shellfish Res. 12, 255–261 (1993).

  69. Begg, G. A. & Marteinsdottir, G. Environmental and stock effects on spawning origins and recruitment of cod Gadus morhua in Icelandic waters. Mar. Ecol. Prog. Ser. 179, 263–275. https://doi.org/10.3354/meps179263 (1999).

    Google Scholar 

  70. Bremner, J., Rogers, S. I. & Frid, C. L. J. Assessing functional diversity in marine benthic ecosystems: a comparison of approaches. Mar. Ecol. Prog. Ser. 254, 11–25. https://doi.org/10.3354/meps254011 (2003).

    Google Scholar 

  71. Cade, B. & Noon, B. A gentle introduction to quantile regression for ecologists. Front. Ecol. Environ. 1, 412–420. https://doi.org/10.1890/1540-9295 (2003).

    Google Scholar 

  72. Cade, B. S., Edmunds, D. R. & Ouren, D. S. Quantile regression estimates of animal population trends. J. Wildl. Manag. 86, e22228. https://doi.org/10.1002/jwmg.22228 (2022).

    Google Scholar 

  73. Cade, B. S., Terrell, J. W. & Porath, M. T. Estimating fish body condition with quantile regression. N. Am. J. Fish. Manag. 28, 349–359 (2008).

    Google Scholar 

  74. Planque, B. & Buffaz, L. Quantile regression models for fish recruitment-environment relationships: four case studies. Mar. Ecol. Prog. Ser. 357, 213–223 (2008).

    Google Scholar 

  75. Ranney, S. H. Quantile regression estimates of body weight at length in Walleye. N. Am. J. Fish. Manag. https://doi.org/10.1002/nafm.10070 (2018).

    Google Scholar 

  76. Lucey, S. M. & Nye, J. A. Shifting species assemblages in the northeast us continental shelf large marine ecosystem. Mar. Ecol. Prog. Ser. 415, 23–33 (2010).

    Google Scholar 

  77. Young, T. et al. Adaptation strategies of coastal fishing communities as species shift poleward. ICES J. Mar. Sci. 76, 93–103 (2019).

    Google Scholar 

  78. Spencer, M., Hennen, D., Klinck, J. M. & Powell, E. The integrity of a stratified random stock survey design in light of projected climate-induced changes in species distribution: the case of the Atlantic surfclam, Spisula solidissima, over the remainder of the 21st century. Submitted (2024).

  79. Moya, A. L., Powell, E. N., Hennen, D. & Klinck, J. M. Does size matter: A direct evaluation of the influence of warming temperatures on the applicability of size limits for the Atlantic surfclam, Spisula solidissima, fishery in the U.S. Mid-Atlantic. Submitted (2024).

Download references

Acknowledgements

The authors thank the NEFSC survey and data analysis teams who provided excellent length and weight data.

Funding

This work was supported by the Basque Government (GIC21/82), the Fundação para a Ciência e a Tecnologia (FCT) (SFRH/BPD/93928/2013), FEDER Funds through the Program ‘Programa Operacional Factores de Competitividade - COMPETE’ and Portuguese Funds through FCT (UID/MAT/00013/2013).

Author information

Authors and Affiliations

  1. Department of Applied Mathematics, Engineering School of Gipuzkoa, University of the Basque Country (EHU), Plaza Europa 1, 28018, Donostia, Spain

    Gorka Bidegain

  2. Research Centre for Experimental Marine Biology & Biotechnology, Plentzia Marine Station, University of the Basque Country (PiE-EHU), Areatza Pasealekua, 48620, Plentzia, Spain

    Gorka Bidegain, Arantza Irirarte & Ibon Uriarte

  3. CITMAga, Galician Center for Mathematical Research and Technology, 15782, Santiago de Compostela, Spain

    Marta Sestelo

  4. Department of Statistics and O.R. & SiDOR Group, Universidade de Vigo, 36310, Vigo, Spain

    Marta Sestelo

  5. AZTI Marine Research, Basque Research and Technology Alliance (BRITA), Herrera Kaia, Portualdea z/g, 20110, Pasaia, Spain

    Patricia L. Luque

  6. Gulf Coast Research Laboratory, University of Southern Mississippi, 703 East Beach Drive, 39564, Ocean Springs, Mississippi, USA

    Eric N. Powell

  7. Department of Plant Biology and Ecology, Faculty of Science and Technology, University of the Basque Country (EHU), Sarriena auzoa z/g, 48940, Leioa, Spain

    Arantza Irirarte

  8. Department of Plant Biology and Ecology, Faculty of Pharmacy, University of the Basque Country (EHU), Unibertsitatearen ibilbidea 7, 01006, Gasteiz, Spain

    Ibon Uriarte

  9. Haskin Shellfish Research Laboratory, Rutgers the State University of New Jersey, 6959 Miller Ave, Port Norris, 08349, New Jersey, USA

    Daphne Munroe

Authors
  1. Gorka Bidegain
    View author publications

    Search author on:PubMed Google Scholar

  2. Marta Sestelo
    View author publications

    Search author on:PubMed Google Scholar

  3. Patricia L. Luque
    View author publications

    Search author on:PubMed Google Scholar

  4. Eric N. Powell
    View author publications

    Search author on:PubMed Google Scholar

  5. Arantza Irirarte
    View author publications

    Search author on:PubMed Google Scholar

  6. Ibon Uriarte
    View author publications

    Search author on:PubMed Google Scholar

  7. Daphne Munroe
    View author publications

    Search author on:PubMed Google Scholar

Contributions

Conceptualization, G.B., M.S., P.L.L., E.P., and D.M.; Methodology, G.B., M.S., E.P., D.M.; Formal analysis, G.B., M.S., E.P., and P.L.L.; Investigation, G.B., M.S., P.L.L., E.P., A.I., I.U., and D.M.; Writing–Original Draft, G.B., M.S., E.P., and P.L.L.; Writing–Review & Editing, G.B., M.S., P.L.L., E.P., A.I., I.U., and D.M.; Supervision, G.B

Corresponding author

Correspondence to Gorka Bidegain.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Supplementary Information.

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if you modified the licensed material. You do not have permission under this licence to share adapted material derived from this article or parts of it. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by-nc-nd/4.0/.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bidegain, G., Sestelo, M., Luque, P.L. et al. Nonparametric quantile regression captures regional variability and scaling deviations in Atlantic surfclam length–weight relationships. Sci Rep (2025). https://doi.org/10.1038/s41598-025-31936-9

Download citation

  • Received: 03 July 2025

  • Accepted: 05 December 2025

  • Published: 14 December 2025

  • DOI: https://doi.org/10.1038/s41598-025-31936-9

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Keywords

  • Bivalves
  • Growth modelling
  • Bootstrap methods
  • Nonparametric smoothing
Download PDF

Advertisement

Explore content

  • Research articles
  • News & Comment
  • Collections
  • Subjects
  • Follow us on Facebook
  • Follow us on Twitter
  • Sign up for alerts
  • RSS feed

About the journal

  • About Scientific Reports
  • Contact
  • Journal policies
  • Guide to referees
  • Calls for Papers
  • Editor's Choice
  • Journal highlights
  • Open Access Fees and Funding

Publish with us

  • For authors
  • Language editing services
  • Open access funding
  • Submit manuscript

Search

Advanced search

Quick links

  • Explore articles by subject
  • Find a job
  • Guide to authors
  • Editorial policies

Scientific Reports (Sci Rep)

ISSN 2045-2322 (online)

nature.com sitemap

About Nature Portfolio

  • About us
  • Press releases
  • Press office
  • Contact us

Discover content

  • Journals A-Z
  • Articles by subject
  • protocols.io
  • Nature Index

Publishing policies

  • Nature portfolio policies
  • Open access

Author & Researcher services

  • Reprints & permissions
  • Research data
  • Language editing
  • Scientific editing
  • Nature Masterclasses
  • Research Solutions

Libraries & institutions

  • Librarian service & tools
  • Librarian portal
  • Open research
  • Recommend to library

Advertising & partnerships

  • Advertising
  • Partnerships & Services
  • Media kits
  • Branded content

Professional development

  • Nature Awards
  • Nature Careers
  • Nature Conferences

Regional websites

  • Nature Africa
  • Nature China
  • Nature India
  • Nature Japan
  • Nature Middle East
  • Privacy Policy
  • Use of cookies
  • Legal notice
  • Accessibility statement
  • Terms & Conditions
  • Your US state privacy rights
Springer Nature

© 2026 Springer Nature Limited

Nature Briefing Anthropocene

Sign up for the Nature Briefing: Anthropocene newsletter — what matters in anthropocene research, free to your inbox weekly.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing: Anthropocene